The p53-inducible gene 3 (PIG3) is originally isolated as a p53 downstream target gene, but its function remains unknown. Here, we report a role of PIG3 in the activation of DNA damage checkpoints, after UV irradiation or radiomimetic drug neocarzinostatin (NCS). We show that depletion of endogenous PIG3 sensitizes cells to DNA damage agents, and impaired DNA repair. PIG3 depletion also allows for UV-and NCS-resistant DNA synthesis and permits cells to progress into mitosis, indicating that PIG3 knockdown can suppress intra-S phase and G2/M checkpoints. PIG3-depleted cells show reduced Chk1 and Chk2 phosphorylation after DNA damage, which may directly contribute to checkpoint bypass. PIG3 exhibited diffuse nuclear staining in the majority of untreated cells and forms discrete nuclear foci in response to DNA damage. PIG3 colocalizes with c-H2AX and 53BP1 to sites of DNA damage after DNA damage, and binds to a c-H2AX. Notably, PIG3 depletion decreases the efficient induction and maintenance of H2AX phosphorylation after DNA damage. Moreover, PIG3 contributes to the recruitment of 53BP1, Mre11, Rad50 and Nbs1 to the sites of DNA break lesions in response to DNA damage. Our combined results suggest that PIG3 is a critical component of the DNA damage response pathway and has a direct role in the transmission of the DNA damage signal from damaged DNA to the intra-S and G2/M checkpoint machinery in human cells.
MDC1 plays a critical role in the DNA damage response (DDR) by interacting directly with several factors including γ-H2AX. However, the mechanism by which MDC1 is recruited to damaged sites remains elusive. Here, we show that MDC1 interacts with a helix–loop–helix (HLH)-containing protein called inhibitor of DNA-binding 3 (ID3). In response to double-strand breaks (DSBs) in the genome, ATM phosphorylates ID3 at serine 65 within the HLH motif, and this modification allows a direct interaction with MDC1. Moreover, depletion of ID3 results in impaired formation of ionizing radiation (IR)-induced MDC1 foci, suppression of γ-H2AX-bound MDC1, impaired DSB repair, cellular hypersensitivity to IR, and genomic instability. Disruption of the MDC1–ID3 interaction prevents accumulation of MDC1 at sites of DSBs and suppresses DSB repair. Thus, our study uncovers an ID3-dependent mechanism of recruitment of MDC1 to DNA damage sites and suggests that the ID3–MDC1 interaction is crucial for DDR.
The catalytic subunit of DNA-dependent protein kinase (DNA-PKcs) plays an essential role in double-strand break repair by initially recognizing and binding to DNA breaks. Here, we show that DNA-PKcs interacts with the regulatory γ1 subunit of AMP-activated protein kinase (AMPK), a heterotrimeric enzyme that has been proposed to function as a "fuel gauge" to monitor changes in the energy status of cells and is controlled by the upstream kinases LKB1 and Ca²⁺/calmodulin-dependent kinase kinase (CaMKK). In co-immunoprecipitation analyses, DNA-PKcs and AMPKγ1 interacted physically in DNA-PKcs-proficient M059K cells but not in DNA-PKcs-deficient M059J cells. Glucose deprivation-stimulated phosphorylation of AMPKα on Thr172 and of acetyl-CoA carboxylase (ACC), a downstream target of AMPK, is substantially reduced in M059J cells compared with M059K cells. The inhibition or down-regulation of DNA-PKcs by the DNA-PKcs inhibitors, wortmannin and Nu7441, or by DNA-PKcs siRNA caused a marked reduction in AMPK phosphorylation, AMPK activity, and ACC phosphorylation in response to glucose depletion in M059K, WI38, and IMR90 cells. In addition, DNA-DNA-PKcs(-/-) mouse embryonic fibroblasts (MEFs) exhibited decreased AMPK activation in response to glucose-free conditions. Furthermore, the knockdown of DNA-PKcs led to the suppression of AMPK (Thr172) phosphorylation in LKB1-deficient HeLa cells under glucose deprivation. Taken together, these findings support the positive regulation of AMPK activation by DNA-PKcs under glucose-deprived conditions in mammalian cells.
Paraquat has been suggested to induce apoptosis by generation of reactive oxygen species (ROS). However, little is known about the mechanism of paraquat-induced apoptosis. Here, we demonstrate that extracellular signal-regulated protein kinase (ERK) is required for paraquat-induced apoptosis in NIH3T3 cells. Paraquat treatment resulted in activation of ERK, and U0126, inhibitors of the MEK/ERK signaling pathway, prevented apoptosis. Moreover, paraquat-induced apoptosis was associated with cytochrome C release, which could be prevented by treatment with the MEK inhibitors. Taken together, our findings suggest that ERK activation plays an active role in mediating paraquat-induced apoptosis of NIH3T3 cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.