The science behind the buildup mechanism of polyelectrolyte multilayers is important for developing devices for various engineering applications. Here we, study the dependency of thickness of polyelectrolyte multilayer films, fabricated using spin-assisted layer-by-layer self-assembly of polyelectrolytes technique, with respect to varying spin-speed while keeping all other parameters of the fabrication process-window constant. The thickness measurements were performed using variable angle spectroscopic ellipsometry and atomic force microscopy. The experimentally observed results were validated mathematically using a Flory type theory. In addition, the biomolecular adsorption studies on these polyelectrolyte multilayer films fabricated at various spin-speeds, were also quantitatively analyzed using fluorescence microscopy studies. It was seen that the effect of spin-speed on the thickness of polyelectrolyte multilayers was negligible. In addition, it was also observed that the bio-molecular adsorption modalities onto these substrates were also independent of the spin-speed. This finding prompts to develop low-cost alternative technologies for various biomedical engineering applications, like functionalized substrates for centrifugal assay for fluorescence-based cell adhesion, wherein stability of films against strong mechanical forces generated during spinning can play an important role.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.