New metallomacrocycles composed of 2,2':6',2″-terpyridine (tpy) ligands and Ru(II) or Fe(II) transition metal ions were prepared by stepwise directed assembly and characterized by 2D diffusion NMR spectroscopy (DOSY), electrospray ionization traveling wave ion mobility mass spectrometry (ESI TWIM MS), and molecular modeling. The supramolecular polymers synthesized include a homonuclear all-Ru hexamer as well as heteronuclear hexamer and nonamer with alternating Ru/Ru/Fe metal centers. ESI MS yields several charge states from each supramacromolecule. If ESI is interfaced with TWIM MS, overlapping charge states and the isomeric components of an individual charge state are separated based on their unique drift times through the TWIM region. From experimentally measured drift times, collision cross-sections can be deduced. The collision cross-sections obtained for the synthesized supramacromolecules are in good agreement with those predicted by molecular modeling for macrocyclic structures. Similarly, the hydrodynamic radii of the synthesized complexes derived from 2D DOSY NMR experiments agree excellently with the radii calculated for macrocyclic architectures, confirming the ESI TWIM MS finding. ESI TWIM MS and 2D DOSY NMR spectroscopy provide an alternative approach for the structural analysis of supramolecules that are difficult or impossible to crystallize, such as the large macrocyclic assemblies investigated. ESI TWIM MS will be particularly valuable for the characterization of supramolecular assemblies not available in the quantity or purity required for NMR studies.
We present a molecular dynamics study of the binding process of peptide A3 (AYSSGAPPMPPF) and other similar peptides onto gold surfaces, and identify the functions of many amino acids. Our results provide a clear picture of the separate regimes present in the binding process: diffusion, anchoring, crawling and binding. Moreover, we explored the roles of individual residues. We found that tyrosine, methionine, and phenylalanine are strong binding residues; serine serves as an effective anchoring residue; proline acts as a dynamic anchoring point, while glycine and alanine give flexibility to the peptide backbone. We then show that our findings apply to unrelated phage-derived sequences that have been reported recently to facilitate AuNP synthesis. This new knowledge may aid in the design of new peptides for the synthesis of gold nanostructures with novel morphologies.
Trehalose-glycerol mixtures are known to be effective in the long time preservation of proteins. However, the microscopic mechanism of their effective preservation abilities remains unclear. In this article we present a molecular dynamics simulation study of the short time, less than 1 ns, dynamics of four trehalose-glycerol mixtures at temperatures below the glass transition temperature. We found that a mixture of 5% glycerol and 95% trehalose has the most suppressed short time dynamics (fast dynamics). This result agrees with the experimental analysis of the mean-square displacement of the hydrogen atoms, as measured via neutron scattering, and correlates with the experimentally observed enhancement of the stability of some enzymes at this particular concentration. Our microscopic analysis suggests that the formation of a robust intermolecular hydrogen bonding network is most effective at this concentration and is the main mechanism for the suppression of the fast dynamics.
We explore possible molecular mechanisms behind the coupling of protein and solvent dynamics using atomistic molecular-dynamics simulations. For this purpose, we analyze the model protein lysozyme in glycerol, a well-known protein-preserving agent. We find that the dynamics of the hydrogen bond network between the solvent molecules in the first shell and the surface residues of the protein controls the structural relaxation (dynamics) of the whole protein. Specifically, we find a power-law relationship between the relaxation time of the aforementioned hydrogen bond network and the structural relaxation time of the protein obtained from the incoherent intermediate scattering function. We demonstrate that the relationship between the dynamics of the hydrogen bonds and the dynamics of the protein appears also in the dynamic transition temperature of the protein. A study of the dynamics of glycerol as a function of the distance from the surface of the protein indicates that the viscosity seen by the protein is not the one of the bulk solvent. The presence of the protein suppresses the dynamics of the surrounding solvent. This implies that the protein sees an effective viscosity higher than the one of the bulk solvent. We also found significant differences in the dynamics of surface and core residues of the protein. The former is found to follow the dynamics of the solvent more closely than the latter. These results allowed us to propose a molecular mechanism for the coupling of the solvent-protein dynamics.
The self-assembly of Zn(II) ions and bis(terpyridine) (tpy) ligands carrying 120° or 180° angles between their metal binding sites was utilized to prepare metallosupramolecular libraries with the
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.