A model for the in vivo degradation of magnetic nanoparticles has been followed to gain insight on the changes of the magnetic properties of iron oxides during their degradation. The degradation kinetics is affected by the particle coating, in our case being the phosphonoacetic acid-coated particles degraded faster than the citric acid-coated ones.
In order to understand the properties involved in the heating performance of magnetic nanoparticles during hyperthermia treatments, a systematic study of different γ-Fe2O3 and Fe3O4 nanoparticles has been done. High-frequency hysteresis loops at 50 kHz carried out on particles with sizes ranging from 6 to 350 nm show susceptibility χ increases from 9 to 40 for large particles and it is almost field independent for the smaller ones. This suggests that the applied field induces chain ordering in large particles but not in the smaller ones due to the competition between thermal and dipolar energy. The specific absorption rate (SAR) calculated from hysteresis losses at 60 mT and 50 kHz ranges from 30 to 360 W/gFe, depending on particle size, and the highest values correspond to particles ordered in chains. This enhanced heating efficiency is not a consequence of the intrinsic properties like saturation magnetization or anisotropy field but to the spatial arrangement of the particles.
Bovine herpesvirus type 5 (BoHV-5) is an etiologic agent of meningoencephalitis in cattle. The aim of this study was to evaluate the antiviral potential of a series of synthetic Mannich bases derived from lawsone and to investigate at which stage of the BoHV-5 replicative cycle the compounds might be acting. The most potent and selective inhibitor exhibited CC50 and EC50 values of 1867 μM ± 8.3 and 3.8 μM ± 1.2, respectively (ACV: 989 μM ± 2 and 166 μM ± 2, respectively).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.