β-Actin, once thought to be an exclusively cytoplasmic protein, is now known to have important functions within the nucleus. Nuclear β-actin associates with and functions in chromatin remodeling complexes, ribonucleic acid polymerase complexes, and at least some ribonucleoproteins. Proteins involved in regulating actin polymerization are also found in the interphase nucleus. We define the dynamic properties of nuclear actin molecules using fluorescence recovery after photobleaching. Our results indicate that actin and actin-containing complexes are reduced in their mobility through the nucleoplasm diffusing at ∼0.5 μm2 s−1. We also observed that ∼20% of the total nuclear actin pool has properties of polymeric actin that turns over rapidly. This pool could be detected in endogenous nuclear actin by using fluorescent polymeric actin binding proteins and was sensitive to drugs that alter actin polymerization. Our results validate previous reports of polymeric forms of nuclear actin observed in fixed specimens and reveal that these polymeric forms are very dynamic.
Fluorescence recovery after photobleaching (FRAP) is an experimental technique used to measure the mobility of proteins within the cell nucleus. After proteins of interest are fluorescently tagged for their visualization and monitoring, a small region of the nucleus is photobleached. The experimental FRAP data are obtained by recording the recovery of the fluorescence in this region over time. In this paper, we characterize the fluorescence recovery curves for diffusing nuclear proteins undergoing binding events with an approximate spatially homogeneous structure. We analyze two mathematical models for interpreting the experimental FRAP data, namely a reaction-diffusion model and a compartmental model. Perturbation analysis leads to a clear explanation of two important limiting dynamical types of behavior exhibited by experimental recovery curves, namely, (1) a reduced diffusive recovery, and (2) a biphasic recovery characterized by a fast phase and a slow phase. We show how the two models, describing the same type of dynamics using different approaches, relate and share common ground. The results can be used to interpret experimental FRAP data in terms of protein dynamics and to simplify the task of parameter estimation. Application of the results is demonstrated for nuclear actin and type H1 histone.
Linker histones stabilize higher order chromatin structures and limit access to proteins involved in DNA-dependent processes. Core histone acetylation is thought to modulate H1 binding. In the current study, we employed kinetic modeling of H1 recovery curves obtained during fluorescence recovery after photobleaching (FRAP) experiments to determine the impact of core histone acetylation on the different variants of H1. Following brief treatments with histone deacetylase inhibitor, most variants showed no change in H1 dynamics. A change in mobility was detected only when longer treatments were used to induce high levels of histone acetylation. This hyperacetylation imparted marked changes in the dynamics of low-affinity H1 population, while conferring variant-specific changes in the mobility of H1 molecules that were strongly bound. Both the C-terminal domain (CTD) and globular domain were responsible for this differential response to TSA. Furthermore, we found that neither the CTD nor the globular domain, by themselves, undergoes a change in kinetics following hyperacetylation. This led us to conclude that hyperacetylation of core histones affects the cooperative nature of low-affinity H1 binding, with some variants undergoing a predicted decrease of almost 2 orders of magnitude.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.