Abstract-The use of pesticides in agriculture is essential to maintain the quality of large-scale production. The spraying of these products by using aircraft speeds up the process and prevents compacting of the soil. However, adverse weather conditions (e.g. the speed and direction of the wind) can impair the effectiveness of the spraying of pesticides in a target crop field. Thus, there is a risk that the pesticide can drift to neighboring crop fields. It is believed that a large amount of all the pesticide used in the world drifts outside of the target crop field and only a small amount is effective in controlling pests. However, with increased precision in the spraying, it is possible to reduce the amount of pesticide used and improve the quality of agricultural products as well as mitigate the risk of environmental damage. With this objective, this paper proposes a methodology based on Particle Swarm Optimization (PSO) for the fine-tuning of control rules during the spraying of pesticides in crop fields. This methodology can be employed with speed and efficiency and achieve good results by taking account of the weather conditions reported by a Wireless Sensor Network (WSN). In this scenario, the UAV becomes a mobile node of the WSN that is able to make personalized decisions for each crop field. The experiments that were carried out show that the optimization methodology proposed is able to reduce the drift of pesticides by fine-tuning of control rules.
Monitoring natural environments is a challenging task on account of their hostile features. The use of wireless sensor networks (WSNs) for data collection is a feasible method since these domains lack any infrastructure. However, further studies are required to handle the data collected for a better modeling of behavior and thus make it possible to forecast impending disasters. In light of this, in this paper an analysis is conducted on the use of data gathered from urban rivers to forecast flooding with a view to reducing the damage it causes. The data were collected by means of a WSN in São Carlos, São Paulo State, Brazil, which gathered and processed data about the river level and rainfall by means of machine learning techniques and employing chaos theory to model the time series; this meant that the inputs of the machine learning technique were the time series gathered by the WSN modeled on the basis of the immersion theorem. The WSNs were deployed by our group in the city of São Carlos where there have been serious problems caused by floods. After the data interdependence had been established by the immersion theorem, the artificial neural networks were investigated to determine their degree of accuracy in the forecasting models.
The rise in the number and intensity of natural disasters is a serious problem that affects the whole world. The consequences of these disasters are significantly worse when they occur in urban districts because of the casualties and extent of the damage to goods and property that is caused. Until now feasible methods of dealing with this have included the use of wireless sensor networks (WSNs) for data collection and machine-learning (ML) techniques for forecasting natural disasters. However, there have recently been some promising new innovations in technology which have supplemented the task of monitoring the environment and carrying out the forecasting. One of these schemes involves adopting IP-based (Internet Protocol) sensor networks, by using emerging patterns for IoT. In light of this, in this study, an attempt has been made to set out and describe the results achieved by SENDI (System for dEtecting and forecasting Natural Disasters based on IoT). SENDI is a fault-tolerant system based on IoT, ML and WSN for the detection and forecasting of natural disasters and the issuing of alerts. The system was modeled by means of ns-3 and data collected by a real-world WSN installed in the town of São Carlos - Brazil, which carries out the data collection from rivers in the region. The fault-tolerance is embedded in the system by anticipating the risk of communication breakdowns and the destruction of the nodes during disasters. It operates by adding intelligence to the nodes to carry out the data distribution and forecasting, even in extreme situations. A case study is also included for flash flood forecasting and this makes use of the ns-3 SENDI model and data collected by WSN.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.