The electronegative low-density lipoprotein, LDL (−), is an endogenously modified LDL subfraction with cytotoxic and proinflammatory actions on endothelial cells, monocytes, and macrophages contributing to the progression of atherosclerosis. In this study, epitopes of LDL (−) were mapped using a phage display library of peptides and monoclonal antibodies reactive to this modified lipoprotein. Two different peptide libraries (X6 and CX8C for 6- and 8-amino acid-long peptides, respectively) were used in the mapping. Among all tested peptides, two circular peptides, P1A3 and P2C7, were selected based on their high affinities for the monoclonal antibodies. Small-angle X-ray scattering analysis confirmed their structures as circular rings. P1A3 or P2C7 were quickly internalized by bone marrow-derived murine macrophages as shown by confocal microscopy. P2C7 increased the expression of TNFα, IL-1 β and iNOS as well as the secretion of TNFα, CCL2, and nitric oxide by murine macrophages, similar to the responses induced by LDL (−), although less intense. In contrast, P1A3 did not show pro-inflammatory effects. We identified a mimetic epitope associated with LDL (−), the P2C7 circular peptide, that activates macrophages. Our data suggest that this conformational epitope represents an important danger-associated molecular pattern of LDL (−) that triggers proinflammatory responses.
Infections caused by protozoans remain a public health issue, especially in tropical countries. Serious adverse events, lack of efficacy at the different stages of the infection and routes of administration that have a negative impact on treatment adherence are some of the problems with currently available therapy against these diseases. Here we describe an epigenetic target, sirtuin 2 and its related proteins, that is promising given the results in phenotypic assays and in vivo models against Sir2 of Plasmodium falciparum, Leishmania donovani, Leishmania infantum, Schistosoma mansoni, Trypanosoma brucei and Trypanosoma cruzi parasites. The results we present highlight how this target can be extensively explored and how its inhibitors might be employed in the clinic.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.