Searching for generic behaviors has been one of the driving forces leading to a deep understanding and classification of diverse phenomena. Usually a starting point is the development of a phenomenology based on observations. Such is the case for power law distributions encountered in a wealth of situations coming from physics, geophysics, biology, lexicography as well as social and financial networks. This finding is however restricted to a range of values outside of which finite size corrections are often invoked. Here we uncover a universal behavior of the way in which elements of a system are distributed according to their rank with respect to a given property, valid for the full range of values, regardless of whether or not a power law has previously been suggested. We propose a two parameter functional form for these rank-ordered distributions that gives excellent fits to an impressive amount of very diverse phenomena, coming from the arts, social and natural sciences. It is a discrete version of a generalized beta distribution, given by f(r) = A(N+1-r)b/ra, where r is the rank, N its maximum value, A the normalization constant and (a, b) two fitting exponents. Prompted by our genetic sequence observations we present a growth probabilistic model incorporating mutation-duplication features that generates data complying with this distribution. The competition between permanence and change appears to be a relevant, though not necessary feature. Additionally, our observations mainly of social phenomena suggest that a multifactorial quality resulting from the convergence of several heterogeneous underlying processes is an important feature. We also explore the significance of the distribution parameters and their classifying potential. The ubiquity of our findings suggests that there must be a fundamental underlying explanation, most probably of a statistical nature, such as an appropriate central limit theorem formulation.
Understanding how spermatozoa approach the egg is a central biological issue. Recently a considerable amount of experimental evidence has accumulated on the relation between oscillations in intracellular calcium ion concentration ([Ca]) in the sea urchin sperm flagellum, triggered by peptides secreted from the egg, and sperm motility. Determination of the structure and dynamics of the signaling pathway leading to these oscillations is a fundamental problem. However, a biochemically based formulation for the comprehension of the molecular mechanisms operating in the axoneme as a response to external stimulus is still lacking. Based on experiments on the S. purpuratus sea urchin spermatozoa, we propose a signaling network model where nodes are discrete variables corresponding to the pathway elements and the signal transmission takes place at discrete time intervals according to logical rules. The validity of this model is corroborated by reproducing previous empirically determined signaling features. Prompted by the model predictions we performed experiments which identified novel characteristics of the signaling pathway. We uncovered the role of a high voltage-activated channel as a regulator of the delay in the onset of fluctuations after activation of the signaling cascade. This delay time has recently been shown to be an important regulatory factor for sea urchin sperm reorientation. Another finding is the participation of a voltage-dependent calcium-activated channel in the determination of the period of the fluctuations. Furthermore, by analyzing the spread of network perturbations we find that it operates in a dynamically critical regime. Our work demonstrates that a coarse-grained approach to the dynamics of the signaling pathway is capable of revealing regulatory sperm navigation elements and provides insight, in terms of criticality, on the concurrence of the high robustness and adaptability that the reproduction processes are predicted to have developed throughout evolution.
We study the behavior of a point particle incident on a slab of a randomly diluted triangular array of circular scatterers. Various scattering properties, such as the reflection and transmission probabilities and the scattering time are studied as a function of thickness and dilution. We show that a diffusion model satisfactorily describes the mentioned scattering properties. We also show how some of these quantities can be evaluated exactly and their agreement with numerical experiments. Our results exhibit the dependence of these scattering data on the mean free path. This dependence again shows excellent agreement with the predictions of a Brownian motion model.
Spermatozoa sea urchin swimming behaviour is regulated by small peptides from the egg outer envelope. Speract, such a peptide, after binding to its receptor in Strongylocentrotus purpuratus sperm flagella, triggers a signaling pathway that culminates with a train of intracellular calcium oscillations, correlated with changes in sperm swimming pattern. This pathway has been widely studied but not fully characterized. Recent work on Arbacia punctulata sea urchin spermatozoa has documented the presence of the Ca2+ CatSper channel in their flagella and its involvement in chemotaxis. However, if other calcium channels participate in chemotaxis remains unclear. Here, based on an experimentally-backed logical network model, we conclude that CatSper is fundamental in the S. purpuratus speract-activated sea urchin sperm signaling cascade, although other Ca2+ channels could still be relevant. We also present for the first time experimental corroboration of its active presence in S. purpuratus sperm flagella. We argue, prompted by in silico knock-out calculations, that CatSper is the main generator of calcium oscillations in the signaling pathway and that other calcium channels, if present, have a complementary role. The approach adopted here allows us to unveil processes, which are hard to detect exclusively by experimental procedures.
Abstract. Boolean threshold networks have recently been proposed as useful tools to model the dynamics of genetic regulatory networks, and have been successfully applied to describe the cell cycles of S. cerevisiae and S. pombe. Threshold networks assume that gene regulation processes are additive. This, however, contrasts with the mechanism proposed by S. Kauffman in which each of the logic functions must be carefully constructed to accurately take into account the combinatorial nature of gene regulation. While Kauffman Boolean networks have been extensively studied and proved to have the necessary properties required for modeling the fundamental characteristics of genetic regulatory networks, not much is known about the essential properties of threshold networks. Here we study the dynamical properties of these networks with different connectivities, activator-repressor proportions, activator-repressor strengths and different thresholds. Special attention is paid to the way in which the threshold value affects the dynamical regime in which the network operates and the structure of the attractor landscape. We find that only for a very restricted set of parameters, these networks show dynamical properties consistent with what is observed in biological systems. The virtues of these properties and the possible problems related with the restrictions are discussed and related to earlier work that uses these kind of models.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.