The advance knowledge about epigenetic modifications caused by periodontopathogens may to possibly led to the development of new periodontal therapies.
Parathyroid hormone (PTH) plays a key role in the development and homeostasis of mineralized tissues such as bone and dentine. We have reported that PTH (1-34) administration can increase dentine formation in mice and that this hormone modulates in vitro mineralization of odontoblast-like cells. The purpose of the present study was to investigate whether PTH (1-34) participates in the proliferative and apoptotic signaling of odontoblast-like cells (MDPC23). MDPC23 cells were exposed to 50 ng/ml hPTH (1-34) or vehicle for 1 (P1), 24 (P24), or 48 (P48) hours, and the cell proliferation, apoptosis, and cell number were evaluated. To examine whether changes in the proliferative and apoptotic signaling in response to PTH involve protein kinases A (PKA) and/or C (PKC), MDPC23 cells were exposed to PTH with or without PKC or PKA signaling pathway inhibitors. Overall, the results showed that the PKA pathway acts in response to PTH exposure maintaining levels of cell proliferation, while the PKC pathway is mainly involved for longer exposure to PTH (24 or 48 h), leading to the reduction of cell proliferation and increase of apoptosis. The exposure to PTH reduced the cell number in relation to the control group in a time-dependent manner. In conclusion, PTH modulates odontoblast-like cell proliferative and apoptotic response in a time-dependent manner. Both PKC and PKA pathways participate in PTH-induced modulation in an antagonist mode.
Parathyroid hormone participates in the metabolism of mineralized tissue. Its role in the formation of dentine is, as yet, incompletely understood. In the present study we analyzed the effect of transient (1 and 24-h/cycle) or continuous hPTH (1-34) treatment in odontoblast-like cells (MDPC-23) to the following parameters: mineral deposition detected by alizarin red, mRNA expression of the type I collagen (COL1), alkaline phosphatase (ALP), biglycan (BGN), matrix metalloproteinase 2 (MMP-2) and dentine sialophosphoprotein (DSPP) quantified by qRT-PCR. MMP-2 and ALP activities were quantified by zymography and colorimetric assay, respectively. The results showed that compared to Control group: intermittent PTH administration (1 and 24-h/cycle) decreased the mineral deposition and ALP activity. DSPP gene expression was not detected in both control and PTH treated cells. The PTH administration for 24-h/cycle increased the ALP, BGN and COL1 mRNA expression and continuous PTH treatment increased BGN and COL1 mRNA expression. Zymography assays showed that compared to Control group: PTH treatment for 1-h/cycle increased the total MMP-2 secretion and the continuous treatment decreased the secreted levels of MMP-2 active-form. Taken together, the results shown that PTH may regulate the odontoblast-like cells-induced secretion, and potentially this hormone can affect in vivo odontoblasts functions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.