This paper describes a procedure to measure the performance of detection and isolation of multiple faults in gas turbines using artificial neural network and optimization techniques. It is on a particular form of artificial neural networks, the traditional multi-layer perceptron (MLP). Error back-propagation and different activation functions are used. The main goal is to recognize single, double and triple faults in a turboshaft engine, whose performance data were output from a gas turbine simulator program, tuned to represent the engine running at an existing power station. MLP network is a nonlinear interpolation function usually made of input layer, hidden-layer and output-layer, with different neuronal units, but in this work, only one hidden-layer was used. Weights were altered by error back-propagation from the initial values established from a seed fixed between 0 and 1. The activation function in the MLP algorithm is the sigmoid function. The best moment to stop the training process and avoid the over fitting problem was chosen by cross-validation. Optimization of convergence error was achieved using the momentum criteria and reducing the oscillation problem in all nets trained. Several configurations of the neural network have been compared and evaluated, using several noise graduations incorporated to the data, aiming at finding the network most suitable to detect and isolate multiple faults in gas turbines. Based on the results obtained it is inferred that the procedure reported herein may be applied to actual systems in order to assist in maintenance programs, at least.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.