We present a phylogenetic analysis of the New World dipsadids based on an expanded data matrix that includes 246 terminal taxa including 196 dipsadids. The species are sampled for eight genes (12S, 16S, cytb, nd2, nd4, bdnf, c‐mos, rag2). The data are explored using two distinct optimality procedures—maximum parsimony and maximum likelihood—and two alignment strategies—dynamic homology and static homology. Two previously unsampled dipsadid genera, Sordellina and Rhachidelus, are now included in the analysis. The definitions of the genera, Erythrolamprus, Clelia, Hypsirhynchus, Philodryas and Phimophis, and the tribes Alsophiini, Echinantherini and Conophiini, are revised. In order to maintain monophyly, the genus Umbrivaga is synonymized with Erythrolamprus, and two new genera are erected to accommodate Phimophis iglesiasi and Clelia rustica, as well as their closely related species. The West Indian genera Schwartzophis, Darlingtonia, Antillophis and Ocyophis are resurrected. © The Willi Hennig Society 2012.
American bothropoids comprise a monophyletic and greatly diverse group of pitvipers that were initially included in the genus Bothrops and later assigned to five genera. Until recently, most phylogenetic analyses of bothropoids used exclusively mitochondrial DNA sequences, whereas few of them have included morphological traits. Moreover, the systematic affinities of some species remain unclear. In this study, we performed a parsimony analysis of morphological data obtained from the examination of 111 characters related to lepidosis, colour pattern, osteology, and hemipenial morphology of 35 of the 48 species that compose the bothropoid group. The morphological data analysed contain novel information about several species, including the incertae sedis. Morphology was analysed separately and combined with 2393 molecular characters obtained from published sequences of four mitochondrial genes. Five characters of the ecology were also included. A sensitivity analysis was performed using different weighting criteria for the characters. The congruence among different sources of evidence was evaluated through partitioned and total evidence analyses, the analyses of reduced datasets and the use of incongruence length difference test. With few exceptions, results showed groups of species similar to those obtained in previous studies; however, incongruences between morphological and molecular characters, and within the molecular partition, were revealed. This conflict affects the relationship between particular groups of species, leading to alternative phylogenetic hypotheses for bothropoids: hierarchical radiation or two major lineages within the group. The results also showed that Bothrops sensu stricto is paraphyletic. We discuss previous taxonomic approaches and, considering both phylogenetic hypotheses, we propose an arrangement that rectifies the paraphyly of Bothrops: maintaining Bothrocophias, assigning Bothrops andianus to this genus; and recognising the sister clade as Bothrops, synonymising Bothriopsis, Bothropoides and Rhinocerophis.
The idea of an area of endemism implies that different groups of plants and animals should have largely coincident distributions. This paper analyses an area of 1152 000 km2, between parallels 21 and 32°S and meridians 70 and 53°W to examine whether a large and taxonomically diverse data set actually displays areas supported by different groups. The data set includes the distribution of 805 species of plants (45 families), mammals (25 families), reptiles (six families), amphibians (five families), birds (18 families), and insects (30 families), and is analysed with the optimality criterion (based on the notion of endemism) implemented in the program NDM/VNDM. Almost 50% of the areas obtained are supported by three or more major groups; areas supported by fewer major groups generally contain species from different genera, families, or orders. © The Willi Hennig Society 2011.
We describe a new species of pitviper of the genus Bothrops from the Peruvian Pampas del Heath, in the Bahuaja-Sonene National Park. Pampas del Heath is an area of seasonally flooded savannas and a northwestern extension of the Gran Chaco Boliviano-Paraguayo. The new species is easily distinguished from its congeners by the exclusive combination of dorsal color pattern of body consisting of small C-shaped blotches, postocular stripe originating posteriorly to the eye, covering posterior supralabials, dorsum of the head with paired markings arranged symmetrically, venter cream heavily speckled with brown, prelacunal scale discrete in contact with second supralabial, three to five prefoveals, subfoveal single usually present, postfoveals absent to two, canthals two, seven intersupraoculars, one or two suboculars, two or three postoculars, seven or eight supralabials, nine to eleven infralabials, 26–27 interrictals, 23–25 middorsal scales, 172 ventrals in the female and 169–173 in males, 45 subcaudals in the female and 50 in males. We performed separate and combined phylogenetic analyses based on morphology and five mitochondrial genes and recovered the new species as a member of the Bothrops neuwiedi species group. All lineages of this clade inhabit the South American dry diagonal. This novel species of pitviper increases the known diversity of the genus Bothrops and adds to the number of described taxa from the unique and scarcely known ecosystem of Pampas del Heath.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.