In annual colonies of bumble-bees overt queen-worker conflict is limited to a distinct 'competition phase' (CPh). In unmanipulated Bombus terrestris colonies, the queen's switch to male production (the 'switch point', SP) accounted for only-22% of the variation in the onset of the CPh. In some colonies, the CPh even began before the SP. The CPh was more strongly correlated with the transition in queen production (r=0.79). Replacing the queen eggs with male eggs or doubling the number of workers in young colonies resulted in a significantly earlier onset of the CPh and a significantly earlier transition to queen production. Replacing queen eggs with female eggs did not have this effect. These manipulations did not affect the timing of the queen's switch from female to male production. These findings show that the mechanism underlying the queen-worker conflict in insect societies is more complex than previously appreciated. The onset of queen-worker conflict cannot be attributed simply to a single factor such as the queen's switch to male production or a decrease in queen inhibition. Rather, multiple cues are important.
Abstract. During the annual life cycle of the bumble bee Bombus terrestris (L.) colony, there is a stage characterized by worker reproduction in the presence of the queen. It has been proposed that this is a result of a decrease in queen inhibition. This hypothesis was examined by studying the effects of queens taken from colonies at different stages of development on several aspects of worker physiology and behaviour: rates of Juvenile Hormone (JH) release in vitro, ovary development, and behaviour associated with reproduction. After optimizing and validating the radiochemical assay for JH release for bumble bee workers, we found that queenless workers had significantly more developed ovaries and higher rates of release of JH than did queenright workers, confirming and extending previous findings that suggest that bumblebee ovarian development is under JH control. Mated queens, separated from their colony and brood, can have the same inhibitory effect on the reproductive development of callow workers. In contrast, workers confined with virgin queens or in queenless groups demonstrated a significantly higher rate of release of JH, overt aggression and threatening behaviours. However, there were no differences in rates of release of JH between workers confined in groups in the laboratory with queens taken from colonies either before or after the onset of worker reproduction. Furthermore, overt aggression and threatening behaviours were similar and low in both types of groups. These results gave no support to the hypothesis that a decrease in queen inhibition is associated with the onset of worker reproduction. We also show that young workers reared in colonies either before or after worker reproduction occurs, or in queenless colonies, all demonstrated similar, low rates of release of JH. These results suggest that older workers may inhibit the corpora allata of younger workers in queenless colonies.
To begin to explore the role of biogenic amines in reproductive division of labor in social insects, brain levels of dopamine, serotonin, and octopamine were measured in bumble bee (Bombus terrestris) workers and queens that differ in behavioral and reproductive state. Levels of all three amines were similar for mated and virgin queens. Young workers that developed with or without a queen had similar amine levels, but in queenright colonies differences in biogenic amine levels were associated with differences in behavior and reproductive physiology. Dominant workers had significantly higher octopamine levels compared with workers of lower dominance status but of similar size, age, and ovary state. High dopamine levels were associated with the last stages of oocyte development irrespective of worker social status and behavior. These results suggest that biogenic amines are involved in behavioral and physiological aspects of regulation of reproduction in bumble bees.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.