The turbulent Rayleigh-Taylor instability is investigated in the limit of strong mode-coupling using a variety of high-resolution, multimode, three dimensional numerical simulations ͑NS͒. The perturbations are initialized with only short wavelength modes so that the self-similar evolution ͑i.e., bubble diameter D b ϰamplitude h b) occurs solely by the nonlinear coupling ͑merger͒ of saturated modes. After an initial transient, it is found that h b ϳ␣ b Agt 2 , where AϭAtwood number, gϭacceleration, and tϭtime. The NS yield D b ϳh b /3 in agreement with experiment but the simulation value ␣ b ϳ0.025Ϯ0.003 is smaller than the experimental value ␣ b ϳ0.057Ϯ0.008. By analyzing the dominant bubbles, it is found that the small value of ␣ b can be attributed to a density dilution due to fine-scale mixing in our NS without interface reconstruction ͑IR͒ or an equivalent entrainment in our NS with IR. This may be characteristic of the mode coupling limit studied here and the associated ␣ b may represent a lower bound that is insensitive to the initial amplitude. Larger values of ␣ b can be obtained in the presence of additional long wavelength perturbations and this may be more characteristic of experiments. Here, the simulation data are also analyzed in terms of bubble dynamics, energy balance and the density fluctuation spectra.
The turbulent Rayleigh–Taylor instability is investigated over a comprehensive range of fluid density ratio (R)1.3⩽R⩽50 [0.15⩽A=(R−1)/(R+1)⩽0.96] and different acceleration histories g(t) using the Linear Electric Motor. The mixing layer is diagnosed with backlit photography and laser-induced fluorescence. For a constant acceleration, the bubble (2) and spike (1) amplitudes are found to increase as hi=αiAgt2 with α2∼0.05±0.005 and α1∼α2RDα with Dα∼0.33±0.05. For temporally varying accelerations Ag(t)>0, this can be generalized to hi=2αiAS using S=[∫gdt]2/2 rather than the displacement Z=∫∫gdt′ dt. For impulsive accelerations, S remains constant during the coast phase and the amplitudes obey a power law hi∼tθi with θ2∼0.25±0.05 and θ1∼θ2RDθ with Dθ∼0.21±0.05. These values of Dα and Dθ compare favorably with numerical simulations and mix models. The average diameter at the mixing front for bubbles is found to increase as d2∼h2(1+A)/4 in qualitative agreement with “merger” models, but the associated dhi/dt is two times larger than the terminal velocity of an isolated bubble. The spikes become relatively narrow at large R, yet they still grow as gt2.
Molecular-dynamics simulations are used to investigate temperature relaxation between electrons and ions in a fully ionized, classical Coulomb plasma with minimal assumptions. Recombination is avoided by using like charges. The relaxation rate agrees with theory in the weak coupling limit (g identical with potential/kinetic energy << 1), whereas it saturates at g > 1 due to correlation effects. The "Coulomb log" is found to be independent of the ion charge (at constant g) and mass ratio > 25.
A turbulence model is developed to described the self-similar growth of the Rayleigh-Taylor (RT) and Richtmyer-Meshkov (RM) instabilities. The model describes the dominant eddies in the mixing zone with evolutionary equations for their characteristic dimension L and energy per unit mass K≡V2∕2. The equations are based on the successful buoyancy-drag models for RT and RM flows, but constructed only with local parameters so that it can be applied to multidimensional flows with multiple shells of materials. The model has several unknown coefficients that are determined by comparing analytical and numerical solutions with RT and RM experiments.
We present a case study of validating an astrophysical simulation code. Our
study focuses on validating FLASH, a parallel, adaptive-mesh hydrodynamics code
for studying the compressible, reactive flows found in many astrophysical
environments. We describe the astrophysics problems of interest and the
challenges associated with simulating these problems. We describe methodology
and discuss solutions to difficulties encountered in verification and
validation. We describe verification tests regularly administered to the code,
present the results of new verification tests, and outline a method for testing
general equations of state. We present the results of two validation tests in
which we compared simulations to experimental data. The first is of a
laser-driven shock propagating through a multi-layer target, a configuration
subject to both Rayleigh-Taylor and Richtmyer-Meshkov instabilities. The second
test is a classic Rayleigh-Taylor instability, where a heavy fluid is supported
against the force of gravity by a light fluid. Our simulations of the
multi-layer target experiments showed good agreement with the experimental
results, but our simulations of the Rayleigh-Taylor instability did not agree
well with the experimental results. We discuss our findings and present results
of additional simulations undertaken to further investigate the Rayleigh-Taylor
instability.Comment: 76 pages, 26 figures (3 color), Accepted for publication in the ApJ
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.