Vitamin C deficiency in the Arabidopsis mutant vtc1 causes slow growth and late flowering. This is not attributable to changes in photosynthesis or increased oxidative stress. We have used the vtc1 mutant to provide a molecular signature for vitamin C deficiency in plants. Using statistical analysis, we show that 171 genes are expressed differentially in vtc1 compared with the wild type. Many defense genes are activated, particularly those that encode pathogenesis-related proteins. Furthermore, transcript changes indicate that growth and development are constrained in vtc1 by the modulation of abscisic acid signaling. Abscisic acid contents are significantly higher in vtc1 than in the wild type. Key features of the molecular signature of ascorbate deficiency can be reversed by incubating vtc1 leaf discs in ascorbate. This finding provides evidence that many of the observed effects on transcript abundance in vtc1 result from ascorbate deficiency. Hence, through modifying gene expression, vitamin C contents not only act to regulate defense and survival but also act via phytohormones to modulate plant growth under optimal conditions.
Programmed cell death, developmental senescence, and responses to pathogens are linked through complex genetic controls that are influenced by redox regulation. Here we show that the Arabidopsis (Arabidopsis thaliana) low vitamin C mutants, vtc1 and vtc2, which have between 10% and 25% of wild-type ascorbic acid, exhibit microlesions, express pathogenesis-related (PR) proteins, and have enhanced basal resistance against infections caused by Pseudomonas syringae. The mutants have a delayed senescence phenotype with smaller leaf cells than the wild type at maturity. The vtc leaves have more glutathione than the wild type, with higher ratios of reduced glutathione to glutathione disulfide. Expression of green fluorescence protein (GFP) fused to the nonexpressor of PR protein 1 (GFP-NPR1) was used to detect the presence of NPR1 in the nuclei of transformed plants. Fluorescence was observed in the nuclei of 6-to 8-week-old GFP-NPR1 vtc1 plants, but not in the nuclei of transformed GFP-NPR1 wild-type plants at any developmental stage. The absence of senescence-associated gene 12 (SAG12) mRNA at the time when constitutive cell death and basal resistance were detected confirms that elaboration of innate immune responses in vtc plants does not result from activation of early senescence. Moreover, H 2 O 2 -sensitive genes are not induced at the time of systemic acquired resistance execution. These results demonstrate that ascorbic acid abundance modifies the threshold for activation of plant innate defense responses via redox mechanisms that are independent of the natural senescence program.The complex relationships between programmed cell death (PCD) and natural senescence observed during leaf development are far from understood. However, one clear distinction is that senescence in leaves is essentially reversible, but PCD is not (Thomas et al., 2003). The genetically programmed cell suicide events that comprise PCD are triggered by enhanced levels of reactive oxygen species (ROS; Chen and Dickman, 2004;Laloi et al., 2004;Wagner et al., 2004). However, senescence-enhanced genes are also expressed in response to ROS (Navabpour et al., 2003).While the chemical nature of ROS dictates that they are potentially harmful to cells, plants use ROS as second messengers in signal transduction cascades regulating diverse processes such as mitosis, tropisms, and cell death. It is now well accepted that ROS accumulation is crucial to plant development as well as defense (Foyer and Noctor, 2005a). ROS signal transduction will ensue only if ROS escape destruction by cellular antioxidants that determine the lifetime and specificity of the signal. Ascorbic acid (AA) and glutathione are the major redox buffers of the plant cells, and they themselves are also signal-transducing molecules that can either signal independently or further transmit ROS signals (Fig. 1). They are thus intrinsic to redox homeostasis and redox-signaling events (Foyer and Noctor, 2005b).ROS production is often genetically programmed, for example, during the hypersen...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.