Programmed cell death, developmental senescence, and responses to pathogens are linked through complex genetic controls that are influenced by redox regulation. Here we show that the Arabidopsis (Arabidopsis thaliana) low vitamin C mutants, vtc1 and vtc2, which have between 10% and 25% of wild-type ascorbic acid, exhibit microlesions, express pathogenesis-related (PR) proteins, and have enhanced basal resistance against infections caused by Pseudomonas syringae. The mutants have a delayed senescence phenotype with smaller leaf cells than the wild type at maturity. The vtc leaves have more glutathione than the wild type, with higher ratios of reduced glutathione to glutathione disulfide. Expression of green fluorescence protein (GFP) fused to the nonexpressor of PR protein 1 (GFP-NPR1) was used to detect the presence of NPR1 in the nuclei of transformed plants. Fluorescence was observed in the nuclei of 6-to 8-week-old GFP-NPR1 vtc1 plants, but not in the nuclei of transformed GFP-NPR1 wild-type plants at any developmental stage. The absence of senescence-associated gene 12 (SAG12) mRNA at the time when constitutive cell death and basal resistance were detected confirms that elaboration of innate immune responses in vtc plants does not result from activation of early senescence. Moreover, H 2 O 2 -sensitive genes are not induced at the time of systemic acquired resistance execution. These results demonstrate that ascorbic acid abundance modifies the threshold for activation of plant innate defense responses via redox mechanisms that are independent of the natural senescence program.The complex relationships between programmed cell death (PCD) and natural senescence observed during leaf development are far from understood. However, one clear distinction is that senescence in leaves is essentially reversible, but PCD is not (Thomas et al., 2003). The genetically programmed cell suicide events that comprise PCD are triggered by enhanced levels of reactive oxygen species (ROS; Chen and Dickman, 2004;Laloi et al., 2004;Wagner et al., 2004). However, senescence-enhanced genes are also expressed in response to ROS (Navabpour et al., 2003).While the chemical nature of ROS dictates that they are potentially harmful to cells, plants use ROS as second messengers in signal transduction cascades regulating diverse processes such as mitosis, tropisms, and cell death. It is now well accepted that ROS accumulation is crucial to plant development as well as defense (Foyer and Noctor, 2005a). ROS signal transduction will ensue only if ROS escape destruction by cellular antioxidants that determine the lifetime and specificity of the signal. Ascorbic acid (AA) and glutathione are the major redox buffers of the plant cells, and they themselves are also signal-transducing molecules that can either signal independently or further transmit ROS signals (Fig. 1). They are thus intrinsic to redox homeostasis and redox-signaling events (Foyer and Noctor, 2005b).ROS production is often genetically programmed, for example, during the hypersen...
Accumulation of free L-proline (Pro) is a typical stress response incited by osmotic injuries in plants and microorganisms. Although the protective role of Pro in osmotic stress is not well understood, it is thought to function as compatible osmolyte or as a scavenger of reactive oxygen species (ROS). Here we show that, in Arabidopsis thaliana, Pro biosynthesis can be activated by incompatible plant-pathogen interactions triggering a hypersensitive response (HR). Pro accumulates in leaf tissues treated with Pseudomonas syringae pv. tomato avirulent strains (avrRpt2 and avrRpm1) but remains unchanged in leaves infected with isogenic virulent bacteria. Incompatible interactions lead to transcriptional activation of AtP5CS2, but not AtP5CS1, encoding the rate limiting enzyme in Pro biosynthesis pyrroline-5-carboxylate synthase (P5CS). AtP5CS2:GUS and AtP5CS2:LUC transgenes were induced inside and around the HR lesions produced by avirulent Pseudomonas spp. in transgenic plants. Pro accumulation was faster and stronger when stimulated by avrRpm1 than by avrRpt2, and was compromised in the low-salicylic acid plants NahG and eds5 when signaled through the RPS2-dependent pathway. In addition, Pro content and AtP5CS2 expression were enhanced by ROS in wild-type plants, suggesting that ROS may function as an intermediate signal in AtP5CS2-mediated Pro accumulation.
Plant tissues display major alterations upon the perception of microbial pathogens. Changes of cytoplasmic and apoplastic components that sense and transduce plant defenses have been extensively characterized. In contrast, less information is available about modifications affecting the plant nuclear genome under these circumstances. Here, we investigated whether the Arabidopsis thaliana DNA methylation status is altered in tissues responding to the attack of Pseudomonas syringae pv. tomato DC3000. We applied amplified fragment length polymorphism analysis to monitor cytosine methylation at anonymous 5'-CCGG-3' and 5'-GATC-3' sites in naive and infected samples. Plant genomic fragments reducing methylation upon infection, including peri/centromeric repeats such as the 180-bp unit, Athila retrotansposon, and a portion of the nuclear insertion of mitochondrial DNA, were isolated and characterized. P. syringae pv. tomato-induced hypomethylation was detected by high-performance liquid chromatography assays and at the molecular level it did not seem to equally affect all 5-methyl cytosine (5-mC) residues. Nuclei from challenged tissues displayed structural chromatin alterations, including loosening of chromocenters, which also were stimulated by avirulent P. syringae pv. tomato, but not by the P. syringae pv. tomato hrpL- mutant. Finally, P. syringae pv. tomato-induced hypomethylation was found to occur in the absence of DNA replication, suggesting that it involves an active demethylation mechanism. All these responses occurred at 1 day postinfection, largely preceding massive plant cell death generated by pathogen attack.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.