The use of biodegradable materials is gaining popularity in medicine, especially in orthopedic applications. However, preclinical evaluation of biodegradable materials can be challenging, since they are located in close contact with host tissues and might be implanted for a long period of time. Evaluation of these compounds requires biodegradability and biocompatibility studies and meticulous pathology examination. We describe 2 preclinical studies performed on Sprague-Dawley rats for 52 weeks, to evaluate clinical pathology, biocompatibility, biodegradability, and systemic toxicity after implantation of 2-layered films or saline-inflated balloon-shaped implants of downsized InSpace™ devices (termed ''test device''). The test devices are made from a copolymer of poly-L-lactide-co-e-caprolactone in a 70:30 ratio, identical to the device used in humans, intended for the treatment of rotator cuff tears. Intra-articular film implantation and subcutaneous implantation of the downsized device showed favorable local and systemic tolerability. Although the implanted materials have no inherent toxic or tumorigenic properties, one animal developed a fibrosarcoma at the implantation site, an event that is associated with a rodent-predilection response where solid materials cause mesenchymal neoplasms. This effect is discussed in the context of biodegradable materials along with a detailed description of expected pathology for biodegradable materials in long-term rodent studies.
Self-adhesive meshes are being developed to avoid complications due to traumatic fixation methods. LifeMesh™ is a novel selfadhesive mesh with a biodegradable gelatin adhesive layer developed for hernia repair. The aim of this study was to assess the safety and biodegradability of LifeMesh in Sprague-Dawley (SD) rats for 6 weeks, in comparison to a bare polypropylene (BPP) mesh fixed with sutures. LifeMesh was tolerated well and its implantation did not result in any adverse local reaction, and its adhesive layer was substantially degraded after 4 weeks. Histopathological examination revealed that the presence of the adhesive contributed to a uniform thickness of the granulation tissue surrounding the mesh, in contrast to a nonuniform granulation tissue with BPP. Nonuniform granulation tissue suggests that there will be poorer integration of the mesh to the abdominal wall. The use of LifeMesh also resulted in less adhesions of internal organs with a smaller surface area of involvement. These findings lend support to the potential benefit of LifeMesh for hernia repair in humans and expand the available information on the typical histopathological findings expected with biodegradable implants in the peritoneal cavity of SD rats.
Purpose: The purpose of this study was to evaluate surgical feasibility and long-term integration of the CorNeat Keratoprosthesis (KPro), a novel synthetic cornea, in rabbits. Methods: The CorNeat KPro is a synthetic corneal implant designed to treat corneal blindness by using a polymeric scaffold for biointegration, consequently assimilating synthetic optics within ocular tissues. Eight New Zealand White rabbits were implanted unilaterally with the CorNeat KPro and observed for 6 months. Animals were regularly monitored by a certified ophthalmologist using slit-lamp biomicroscopy. One animal developed postoperative endophthalmitis and was removed from the study 7 weeks postsurgery. At termination, eyes were enucleated and evaluated histologically to assess local tissue integration and inflammatory response. Results: The surgical procedure was found feasible. The CorNeat KPro integrated into all operated eyes, resulting in a retention rate of 87.5% at the conclusion of the 6-month follow-up period. We observed minimal-to-mild conjunctival and iridial congestion and did not find additional inflammatory indicators, such as anterior chamber fibrin, flare, or cells. The optical element of the device remained clear with zero incidence of retroprosthetic membrane formation. Histopathological evaluation revealed comparable tissue and cellular reaction in all eyes, consisting of the presence of fibroblasts and associated collagen fibrils within the device's skirt component. Some eyes showed a mild foreign body reaction surrounding the skirt. Conclusions: Clinical and histological findings indicate the integration of the implanted device into the surrounding tissue, evident by the retention rate and the diffuse infiltration of fibroblasts with collagen deposition among the device's fibrils. These data hold promise for clinical application in humans.
Fracture-related infections remain a leading cause of morbidity and mortality. We aimed to establish a simple contaminated radial osteotomy model to assess the efficacy of a biodegradable polymer poly(sebacic-co-ricinoleic acid) [p(SA-RA)] containing 20% w/w gentamicin. A unilateral transverse osteotomy was induced in Sprague-Dawley (SD) rats, followed by application of Staphylococcus aureus suspension over the fracture. After successfully establishing the contaminated open fracture model, we treated the rats either systemically (intraperitoneal cefuroxime), locally with p(SA-RA) containing gentamicin, or both. Control groups included non-contaminated group and contaminated groups that were either untreated or treated with the polymer alone. After 4 weeks, the bones were subjected to micro-CT scanning and microbiological and histopathology evaluations. Micro-CT analysis revealed similar changes in the group subjected to both local and systemic treatment as in the non-contaminated control group. Lack of detectable bacterial growth was noted in most animals of the group subjected to both local and systemic treatment, and all samples were negative for S. aureus . Histopathological evaluation revealed that all treatment modalities containing antibiotics were highly effective in reducing infection and promoting callus repair, resulting in early bone healing. While p(SA-RA) containing gentamicin treatment showed better results than cefuroxime, the combination of local and systemic treatment displayed the highest therapeutic potential in this model.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.