Chromosome organization is crucial for genome function. Here, we present a method for visualizing chromosomal DNA at super-resolution and then integrating Hi-C data to produce three-dimensional models of chromosome organization. Using the super-resolution microscopy methods of OligoSTORM and OligoDNA-PAINT, we trace 8 megabases of human chromosome 19, visualizing structures ranging in size from a few kilobases to over a megabase. Focusing on chromosomal regions that contribute to compartments, we discover distinct structures that, in spite of considerable variability, can predict whether such regions correspond to active (A-type) or inactive (B-type) compartments. Imaging through the depths of entire nuclei, we capture pairs of homologous regions in diploid cells, obtaining evidence that maternal and paternal homologous regions can be differentially organized. Finally, using restraint-based modeling to integrate imaging and Hi-C data, we implement a method–integrative modeling of genomic regions (IMGR)–to increase the genomic resolution of our traces to 10 kb.
SignificanceFISH enables researchers to visualize the subcellular distribution of RNA and DNA molecules in individual cells. The recent development of FISH methods employing probes composed of synthetic DNA oligonucleotides (oligos) allows researchers to tightly control aspects of probe design such as binding energy and genomic specificity. Although oligo FISH probes are central to many recently developed massively multiplexed and superresolution imaging methods, no dedicated computational utility exists to facilitate the design of such probes on the genome-wide scale. Here, we introduce a streamlined pipeline for the rapid, genome-scale design of oligo FISH probes and validate our approach by using conventional and superresolution imaging. Our method provides a framework with which to design oligo-based hybridization experiments.
That genome function may respond to its three-dimensional (3D) organization highlights the need for methods that can image genomes with superior coverage as well as greater genomic and optical resolution. Here, we push toward this goal by introducing OligoFISSEQ, a suite of three methods that leverage fluorescent in situ sequencing of barcoded Oligopaint probes to enable the rapid visualization of many targeted genomic regions. Applying OligoFISSEQ to human diploid fibroblast cells, we show how only four rounds of sequencing are sufficient to produce 3D maps of 66 genomic targets across 6 chromosomes in hundreds to thousands of cells. We then use OligoFISSEQ to trace chromosomes at finer resolution, following the path of the X chromosome through 46 regions, with separate studies showing compatibility of OligoFISSEQ with immunochemistry. Finally, we combined OligoFISSEQ with OligoSTORM, laying the foundation for accelerated single-molecule super-resolution imaging of large swaths of, if not entire, human genomes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.