Chromosome organization is crucial for genome function. Here, we present a method for visualizing chromosomal DNA at super-resolution and then integrating Hi-C data to produce three-dimensional models of chromosome organization. Using the super-resolution microscopy methods of OligoSTORM and OligoDNA-PAINT, we trace 8 megabases of human chromosome 19, visualizing structures ranging in size from a few kilobases to over a megabase. Focusing on chromosomal regions that contribute to compartments, we discover distinct structures that, in spite of considerable variability, can predict whether such regions correspond to active (A-type) or inactive (B-type) compartments. Imaging through the depths of entire nuclei, we capture pairs of homologous regions in diploid cells, obtaining evidence that maternal and paternal homologous regions can be differentially organized. Finally, using restraint-based modeling to integrate imaging and Hi-C data, we implement a method–integrative modeling of genomic regions (IMGR)–to increase the genomic resolution of our traces to 10 kb.
The role of a room temperature ionic liquid (RTIL, [pmim][Br]) on the size and conformational dynamics of a protein, horse heart cytochrome c (Cyt C) in its native, molten globule (MG-I and II), and unfolded states is studied using fluorescence correlation spectroscopy (FCS). For this purpose, the protein was covalently labeled by a fluorescent dye, Alexa Fluor 488. It is observed that the addition of the RTIL leads to an increase in the hydrodynamic radius (r(H)) of the protein, Cyt C in the native or MG-I state. In contrast, the addition of RTIL causes a decrease in the size (hydrodynamic radius, r(H)) of Cyt C unfolded by GdnHCl or MG-II state. The decrease in size indicates the formation of a relatively compact structure. We detected two types of conformational relaxation of the protein. The shorter relaxation time component (~3-5.5 μs) corresponds to the protein folding or intrachain contact formation, while the relatively longer time component (~63-122 μs) may be assigned to the motion of the protein side chains or concerted chain dynamics. The burst integrated fluorescence lifetime histograms indicate that the increase in size of the protein is accompanied by an increase in the contribution of the shorter component (~0.3-0.4 ns) with a concomitant decrease of the contribution of the longer component (~2.8-3.6 ns). An opposite trend is observed during the decrease in size of the protein.
That genome function may respond to its three-dimensional (3D) organization highlights the need for methods that can image genomes with superior coverage as well as greater genomic and optical resolution. Here, we push toward this goal by introducing OligoFISSEQ, a suite of three methods that leverage fluorescent in situ sequencing of barcoded Oligopaint probes to enable the rapid visualization of many targeted genomic regions. Applying OligoFISSEQ to human diploid fibroblast cells, we show how only four rounds of sequencing are sufficient to produce 3D maps of 66 genomic targets across 6 chromosomes in hundreds to thousands of cells. We then use OligoFISSEQ to trace chromosomes at finer resolution, following the path of the X chromosome through 46 regions, with separate studies showing compatibility of OligoFISSEQ with immunochemistry. Finally, we combined OligoFISSEQ with OligoSTORM, laying the foundation for accelerated single-molecule super-resolution imaging of large swaths of, if not entire, human genomes.
Time-resolved confocal microscopy is applied to compare fluorescence properties of gold nanocluster (Au-NC) inside human breast cells with those in bulk water. In bulk water, Au-NC, coated with bovine serum albumin (BSA), displays a major emission peak at ∼640 nm, a minor peak at 460 nm and a very weak peak at 500 nm. The major peak is ascribed to an Au25 cluster with an icosahedral Au13 core, surrounded by six thiol (from BSA) mediated Au2 staples. Inside the live cells, emission maximum of Au-NC exhibits a dramatic blue shift to 530 nm in normal breast cell (MCF10A) and 510 nm in breast cancer cell (MCF7). The 510–530 nm emission peak corresponds to an icosahedral Au13 cluster. It appears that inside the cell, glutathione competes with and replaces BSA as a ligand of the Au-NC. This leads to etching of the Au-NC to Au13. Confocal images indicate that the Au-NCs localize in the membrane of the normal breast cell, MCF10A. In the case of breast cancer cell MCF7, the Au-NCs localize in a much larger volume encompassing the cell membrane and the cytoplasm. This demonstrates higher uptake of Au-NCs by the cancer cell. Fluorescence correlation spectroscopy (FCS) is applied to measure viscosity inside the live cells, using Au-NC as a probe. For the cancer cell, the cytoplasmic viscosity is found to be 7 cP. The FCS data for the membrane is fitted to two-dimensional (2D) diffusion. From this the surface viscosity is obtained using Saffman–Stokes–Einstein theory. The surface viscosity in the cancer cell is ∼9-times higher than that in the normal cell.
Different regions of a single live Chinese hamster ovary (CHO) cell are probed by time-resolved confocal microscopy. We used coumarin 153 (C153) as a probe. The dye localizes in the cytoplasm, nucleus, and lipid droplets, as is clearly revealed by the image. The fluorescence correlation spectroscopy (FCS) data shows that the microviscosity of lipid droplets is ~34 ± 3 cP. The microviscosities of nucleus and cytoplasm are found to be 13 ± 1 and 14.5 ± 1 cP, respectively. The average solvation time (<τs>) in the lipid droplets (3600 ± 50 ps) is slower than that in the nucleus (<τs> = 750 ± 50 ps) and cytoplasm (<τs> = 1100 ± 50 ps). From the position of emission maxima of C153, the polarity of the nucleus is estimated to be similar to that of a mixture containing 26% DMSO in triacetin (η ~ 11.2 cP, ε ~ 26.2). The cytoplasm resembles a mixture of 18% DMSO in triacetin (η ∼ 12.6 cP, ε ∼ 21.9). The polarity of lipid droplets is less than that of pure triacetin (η ~ 21.7 cP, ε ~ 7.11).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.