The commonly used analytic method for assessing total petroleum hydrocarbons (TPH) in soil, EPA method 418.1, is usually based on extraction with 1,1,2-trichlorotrifluoroethane (Freon 113) and FTIR spectroscopy of the extracted solvent. This method is widely used for initial site investigation, due to the relative low price per sample. It is known that the extraction efficiency varies depending on the extracting solvent and other sample properties. This study’s main goal was to evaluate reflectance spectroscopy as a tool for TPH assessment, as compared with three commercial certified laboratories using traditional methods. Large variations were found between the results of the three commercial laboratories, both internally (average deviation up to 20%), and between laboratories (average deviation up to 103%). Reflectance spectroscopy method was found be as good as the commercial laboratories in terms of accuracy and could be a viable field-screening tool that is rapid, environmental friendly, and cost effective.
Remote-sensing techniques offer an efficient alternative for mapping mining environments and assessing the impacts of mining activities. Airborne multispectral data in the thermal region and hyperspectral data in the optical region, acquired with the Airborne Hyperspectral Scanner (AHS) sensor over the Sokolov lignite open-pit mines in the Czech Republic, were analyzed. The emissivity spectrum was calculated for each vegetation-free land pixel in the longwave infrared (LWIR)-region image using the surface-emitted radiation, and the reflectance spectrum was derived from the visible, near-infrared and shortwave-infrared (VNIR-SWIR)-region image using the solar radiation reflected from the surface, after applying atmospheric correction. The combination of calculated emissivity, with the ability to detect quartz, and SWIR reflectance spectra, detecting phyllosilicates and kaolinite in particular, enabled estimating the content of the dominant minerals in the exposed surface. The difference between the emissivity values at λ = 9.68 µm and 8.77 µm was found to be a useful index for estimating the relative amount of quartz in each land pixel in the LWIR image. The absorption depth at around 2.2 µm in the reflectance spectra was used to estimate the relative amount of kaolinite in each land pixel in the SWIR image.
OPEN ACCESSRemote Sens. 2014, 6
7006The resulting maps of the spatial distribution of quartz and kaolinite were found to be in accordance with the geological nature and origin of the exposed surfaces and demonstrated the benefit of using data from both thermal and optical spectral regions to map the abundance of the major minerals around the mines.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.