of ~0.16 mg/ml (~1.07 µM). This VC212 could serve as a valuable starting material for further development of VACV-neutralizing human immunoglobulin for a prophylactic measure against post-vaccination complications and for post-exposure treatment against smallpox.
Abbreviations: HAMA, human anti-mouse antibody; scFv, single chain Fv; VH, variable region of immunoglobulin heavy chain; VL, variable region of immunoglobulin light chain
AbstractEpidermal growth factor receptor (EGFR) is an attractive target for tumor therapy because it is overexpressed in the majority of solid tumors and the increase in receptor expression levels has been linked with a poor clinical prognosis. Also it is well established that blocking the interaction of EGFR and the growth factors could lead to the arrest of tumor growth and possibly result in tumor cell death. A13 is a murine monoclonal antibody (mAb) that specifically binds to various sets of EGFR-expressing tumor cells and inhibits EGF-induced EGFR phosphorylation. We isolated human immunoglobulin genes by guided selection based on the mAb A13. Four different human single chain Fvs (scFvs) were isolated from from hybrid scFv libraries containing a human V H repertoire with the V L of mAb A13 and a human VL repertoire with the VH of mAb A13. All the 4 scFvs bound to EGFR-expressing A431 cells. One scFv (SC414) with the highest affinity was converted to IgG1 (ER414). The ER414 exhibited ∼17 fold lower affinity compared to the A13 mAb. In addition the ER414 inhibited an EGF-induced tyrosine phosphorylation of EGFR with much lower efficacy compared to the A13 mAb and Cetuximab (Merck KgaA, Germany). We identified that the epitope of A13 mAb is retained in ER414. This approach will provide an efficient way of converting a murine mAb to a human mAb.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.