Bacterial diterpene cyclases are receiving increasing attention in biocatalysis and synthetic biology for the sustainable generation of complex multicyclic building blocks. Herein, we explore the potential of ancestral sequence reconstruction (ASR) to generate remodeled cyclases with enhanced stability, activity, and promiscuity. Putative ancestors of spiroviolene synthase, a bacterial class I diterpene cyclase, display an increased yield of soluble protein of up to fourfold upon expression in the model organism Escherichia coli. Two of the resurrected enzymes, with an estimated age of approximately 1.7 million years, display an upward shift in thermostability of 7–13 °C. Ancestral spiroviolene synthases catalyze cyclization of the natural C20‐substrate geranylgeranyl diphosphate (GGPP) and also accept C15 farnesyl diphosphate (FPP), which is not converted by the extant enzyme. In contrast, the consensus sequence generated from the corresponding multiple sequence alignment was found to be inactive toward both substrates. Mutation of a nonconserved position within the aspartate‐rich motif of the reconstructed ancestral cyclases was associated with modest effects on activity and relative substrate specificity (i.e., kcat/KM for GGPP over kcat/KM for FPP). Kinetic analyses performed at different temperatures reveal a loss of substrate saturation, when going from the ancestor with highest thermostability to the modern enzyme. The kinetics data also illustrate how an increase in temperature optimum of biocatalysis is reflected in altered entropy and enthalpy of activation. Our findings further highlight the potential and limitations of applying ASR to biosynthetic machineries in secondary metabolism.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.