A dual-frequency 1.55 µm laser for CW low noise microwave, millimeter and sub millimeter wave synthesis is demonstrated, where frequency stabilization is possible on each wavelength independently. The solid state Er:Yb laser output power is 7 mW. The amplitude noise is -150 dBc/Hz at 1 MHz offset frequency. In free running regime, the frequency noise is 3.10(5)/f Hz/sqrt(Hz) (800 Hz on a 1µs timescale), better than commercial fibered or semi-conductor sources at this wavelength.
We propose a reliable method for stabilizing narrow linewidth Brillouin fiber lasers with non-resonant pumping. Mode-hopping is suppressed by means of a phase-locked loop that locks the pump-Stokes detuning to a local radio-frequency (RF) oscillator. Stable single-mode operation of a 110-m-long Brillouin fiber laser oscillating at 1.55 μm is demonstrated for several hours. The beat note between two independent Stokes waves presents a phase noise level of -60 dBc/Hz at 100 Hz with a -20 dB/decade slope, and a FWHM linewidth lower than 50 Hz.
International audienceWe report on the design of an ultra stable microwave/THz oscillator and on the realization and the characterization of its laser source. The tunable oscillator is expected to show below -150 dB rad2/Hz phase instability at an offset frequency of 10 kHz for a 30 GHz carrier frequency, as well as 18 GHz, 100 GHz, 400 GHz and 1 THz carrier frequencies
This Letter describes the design of an optical amplifier system optimized to reduce the relative intensity noise (RIN) of the input signal, and discloses its performance in terms of intensity noise reduction and bandwidth, without phase noise degradation. This polarization-maintaining amplifier is composed of an erbium-doped fiber amplifier (EDFA) cascaded with a semiconductor optical amplifier (SOA). The EDFA is sized to feed the SOA with a constant power corresponding to the optimal saturation level for noise reduction, through coherent population oscillations. When properly optimized, such an amplifier provides, simultaneously, 17 dB optical gain, 5.4 dB noise factor, and 20 dB reduction of the input-RIN across a 3 GHz bandwidth, without any electronics feedback loop.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.