Pearl millet is traditionally a small grain crop, adapted to marginal environments. Micronutrient malnutrition arising from deficiency of one or more essential micronutrients. Crop biofortification is a sustainable and cost-effective approach to address micro nutrient malnutrition, especially in the developing world. It refers to the development of micronutrientdense staple crops using conventional breeding practices. Availability of traits of concern in improved genetic background greatly enhances the breeding efficiency for the target trait combining with other desirable agronomic traits. The main objective of this study was to determine heterosis for Fe and Zn by using line x tester analysis. Low level of heterosis over mid-parent (MP) for grain Fe and Zn and no hybrid with significant heterosis over better-parent (BP) for Fe and Zn, suggested that there would be little opportunity, if any, to exploit heterosis for these traits. This would also mean that to breed high Fe and high Zn hybrids, these traits will have to breed into both parental lines of hybrids.Based on the results, it can be concluded that there are good prospects of genetic enhancement for grain Fe and Zn content ratio interm of hybrid development in pearl millet.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.