BackgroundThere are still a large variety of microorganisms among aquatic animals which have not been explored for their pharmacological potential. Hence, present study was aimed to isolate and characterize a potent lactic acid bacterium from fresh water fish sample Zacco koreanus, and to confirm its pharmacological potential.MethodsIsolation of lactic acid bacteria (LAB) from fresh water fish samples was done using serial dilution method. Biochemical identification and molecular characterization of selected LAB isolate 1I1, based on its potent antimicrobial efficacy, was accomplished using API kit and 16S rRNA gene sequencing analysis. Further, 1I1 was assessed for α-glucosidase and tyrosinase inhibitory potential as well as antiviral efficacy against highly pathogenic human influenza virus H1N1 using MDCK cell line in terms of its pharmacological potential.ResultsHere, we first time report isolation as well as biochemical and molecular characterization of a lactic acid bacterium Lactobacillus sakei 1I1 isolated from the intestine of a fresh water fish Z. koreanus. As a result, L. sakei 1I1 exhibited potent antimicrobial effect in vitro, and diameter of zones of inhibition of 1I1 against the tested pathogens was found in the range of 13.32 ± 0.51 to 23.16 ± 0.32 mm. Also L. sakei 1I1 at 100 mg/ml exhibited significant (p < 0.05) α–glucosidase and tyrosinase inhibitory activities by 60.69 and 72.59 %, in terms of its anti-diabetic and anti-melanogenic potential, respectively. Moreover, L. sakei 1I1 displayed profound anti-cytopathic effect on MDCK cell line when treated with its ethanol extract (100 mg/ml), confirming its potent anti-viral efficacy against H1N1 influenza virus.ConclusionsThese findings reinforce the suggestions that L. sakei 1I1 isolated from the intestine of fresh water fish Z. koreanus might be a candidate of choice for using in pharmacological preparations as an effective drug.
This study characterized a lactic acid bacterium Leuconostoc mesenteroides HJ69 at biochemical and molecular level, isolate from traditional Korean fermented food Kimchi. Cell free supernatant (CFS) of L. mesenteroides HJ69 exhibited significant (P < 0.05) antibacterial effect as diameters of inhibition zones (14.34 ± 0.31 – 18.21 ± 0.23 mm) against the tested foodborne pathogenic bacteria with minimum inhibitory concentration and minimum bactericidal concentration values found in the range of 250–2,000 and 500–2,000 μg/mL, respectively. Further, CFS of L. mesenteroides HJ69 revealed its mode of action on membrane integrity as confirmed by the increased release of potassium ions (800 and 750 mM/L), loss of 260‐nm absorbing materials (3.85 and 3.77 OD), and increase in relative electrical conductivity (8.6 and 8.2%) against two selected bacteria L. monocytogenes KCTC‐3569 (Gram‐positive) and Escherichia coli O157:H7 (Gram‐negative), respectively. The above findings hypothesize that L. mesenteroides HJ69 compromised its mode of action on membrane integrity, suggesting its enormous potential in the food industry. Practical Applications Asian countries have enormous use of fermented food products enriched with large populations of health‐beneficial lactic acid bacteria (LAB). This study describes the isolation of a LAB strain Leuconostoc mesenteroides HJ69 from traditional Korean fermented food Kimchi along with its biochemical and molecular characterization. The cell free supernatant of L. mesenteroides HJ69 displayed remarkable antibacterial effect against various foodborne pathogenic bacteria with a hypothesized mode of action in several assays. These findings suggest that L. mesenteroides HJ69 could be an effective candidate for its practical application in food industry to control the proliferation of foodborne pathogenic bacteria as a natural antimicrobial agent.
Psoriasis is a skin disorder characterized by skin inflammation and plaques. Induction of psoriasis in animal model include following steps: a) Selection of animal model, b) Hair removing from the back or ear, c) treatment of skin with Aldara, a cream containing 5% imiquimod and d) Observation. Imiquimodinduced skin inflammation in animal model resembles with psoriasis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.