In this work, small random pyramid texturing (0.5–2 μm size) was generated with chemical nano-masking, to enhance the surface passivation of commercial p-type Cz-Si wafers.
In this paper, the relationship between coordination complexes and electrical properties according to the bonding structure of boron and silicon was analyzed to optimize the p–n junction quality for high-efficiency n-type crystalline solar cells. The p+ emitter layer was formed using boron tribromide (BBr3). The etch-back process was carried out with HF-HNO3-CH3COOH solution to vary the sheet resistance (Rsheet). The correlation between boron–silicon bonding in coordination complexes and electrical properties according to the Rsheet was analyzed. Changes in the boron coordination complex and boron–oxygen (B–O) bonding in the p+ diffused layer were measured through X-ray photoelectron spectroscopy (XPS). The correlation between electrical properties, such as minority carrier lifetime (τeff), implied open-circuit voltage (iVoc) and saturation current density (J0), according to the change in element bonding, was analyzed. For the interstitial defect, the boron ratio was over 1.8 and the iVoc exceeded 660 mV. Additional gains of 670 and 680 mV were obtained for the passivation layer AlOx/SiNx stack and SiO2/SiNx stack, respectively. The blue response of the optimized p+ was analyzed through spectral response measurements. The optimized solar cell parameters were incorporated into the TCAD tool, and the loss analysis was studied by varying the key parameters to improve the conversion efficiency over 23%.
N-type crystalline silicon solar cells have high metal impurity tolerance and higher minority carrier lifetime that increases conversion efficiency. However, junction quality between the boron diffused layer and the n-type substrate is more important for increased efficiency. In this paper, the current status and prospects for boron diffused layers in N-type crystalline silicon solar cell applications are described. Boron diffused layer formation methods (thermal diffusion and co-diffusion using a-SiO X :B), boron rich layer (BRL) and boron silicate glass (BSG) reactions, and analysis of the effects to improve junction characteristics are discussed. In-situ oxidation is performed to remove the boron rich layer. The oxidation process after diffusion shows a lower B-O peak than before the Oxidation process was changed into SiO 2 phase by FTIR and BRL. The a-SiO X :B layer is deposited by PECVD using SiH 4 , B 2 H 6 , H 2 , CO 2 gases in N-type wafer and annealed by thermal tube furnace for performing the P+ layer. MCLT (minority carrier lifetime) is improved by increasing SiH 4 and B 2 H 6 . When a-SiO X :B is removed, the Si-O peak decreases and the B-H peak declines a little, but MCLT is improved by hydrogen passivated inactive boron atoms. In this paper, we focused on the boron emitter for N-type crystalline solar cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.