The large-scale crossbar array is a promising architecture for hardware-amenable energy efficient three-dimensional memory and neuromorphic computing systems. While accessing a memory cell with negligible sneak currents remains a fundamental issue in the crossbar array architecture, up-to-date memory cells for large-scale crossbar arrays suffer from process and device integration (one selector one resistor) or destructive read operation (complementary resistive switching). Here, we introduce a self-selective memory cell based on hexagonal boron nitride and graphene in a vertical heterostructure. Combining non-volatile and volatile memory operations in the two hexagonal boron nitride layers, we demonstrate a self-selectivity of 10 10 with an on/off resistance ratio larger than 10 3 . The graphene layer efficiently blocks the diffusion of volatile silver filaments to integrate the volatile and non-volatile kinetics in a novel way. Our self-selective memory minimizes sneak currents on large-scale memory operation, thereby achieving a practical readout margin for terabit-scale and energy-efficient memory integration.
Vertically stacked two-dimensional van der Waals (vdW) heterostructures, used to obtain homogeneity and band steepness at interfaces, exhibit promising performance for band-to-band tunneling (BTBT) devices. Esaki tunnel diodes based on vdW heterostructures, however, yield poor current density and peak-to-valley ratio, inferior to those of three-dimensional materials. Here, we report the negative differential resistance (NDR) behavior in a WSe2/SnSe2 heterostructure system at room temperature and demonstrate that heterointerface control is one of the keys to achieving high device performance by constructing WSe2/SnSe2 heterostructures in inert gas environments. While devices fabricated in ambient conditions show poor device performance due to the observed oxidation layer at the interface, devices fabricated in inert gas exhibit extremely high peak current density up to 1460 mA/mm2, 3–4 orders of magnitude higher than reported vdW heterostructure-based tunnel diodes, with a peak-to-valley ratio of more than 4 at room temperature. Besides, Pd/WSe2 contact in our device possesses a much higher Schottky barrier than previously reported Cr/WSe2 contact in the WSe2/SnSe2 device, which suppresses the thermionic emission current to less than the BTBT current level, enabling the observation of NDR at room temperature. Diode behavior can be further modulated by controlling the electrostatic doping and the tunneling barrier as well.
Bonding geometry engineering of metal–oxygen octahedra is a facile way of tailoring various functional properties of transition metal oxides. Several approaches, including epitaxial strain, thickness, and stoichiometry control, have been proposed to efficiently tune the rotation and tilt of the octahedra, but these approaches are inevitably accompanied by unnecessary structural modifications such as changes in thin‐film lattice parameters. In this study, a method to selectively engineer the octahedral bonding geometries is proposed, while maintaining other parameters that might implicitly influence the functional properties. A concept of octahedral tilt propagation engineering is developed using atomically designed SrRuO 3 /SrTiO 3 (SRO/STO) superlattices. In particular, the propagation of RuO 6 octahedral tilt within the SRO layers having identical thicknesses is systematically controlled by varying the thickness of adjacent STO layers. This leads to a substantial modification in the electromagnetic properties of the SRO layer, significantly enhancing the magnetic moment of Ru. This approach provides a method to selectively manipulate the bonding geometry of strongly correlated oxides, thereby enabling a better understanding and greater controllability of their functional properties.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.