We demonstrate a hard-X-ray self-seeded (HXRSS) free-electron laser (FEL) at Pohang Accelerator Laboratory with an unprecedented peak brightness (3.2 × 10 35 photons/(s•mm 2 •mrad 2 •0.1%BW)). The self-seeded FEL generates hard X-ray pulses with improved spectral purity; the average pulse energy was 0.85 mJ at 9.7 keV, almost as high as in SASE mode; the bandwidth (0.19 eV) is about 1/70 as wide, the peak spectral brightness is 40 times higher than in self-ampli ed spontaneous emission (SASE) mode, and the stability is excellent with > 94% of shots exceeding the average SASE intensity. Using this self-seeded XFEL, we conducted serial femtosecond crystallography (SFX) experiments to map the structure of lysozyme protein; data-quality metrics such as R split , multiplicity, and signal-to-noise ratio for the SFX were substantially increased. We precisely map out the structure of lysozyme protein with substantially better statistics for the diffraction data and signi cantly sharper electron density maps compared to maps obtained using SASE mode.
A wake monochromator based on a large‐area diamond single crystal for hard X‐ray self‐seeding has been successfully installed and commissioned in the hard X‐ray free‐electron laser (FEL) at the Pohang Accelerator Laboratory with international collaboration. For this commissioning, the self‐seeding was demonstrated with a low bunch charge (40 pC) and the nominal bunch charge (180 pC) of self‐amplified spontaneous emission (SASE) operation. The FEL pulse lengths were estimated as 7 fs and 29.5 fs, respectively. In both cases, the average spectral brightness increased by more than three times compared with the SASE mode. The self‐seeding experiment was demonstrated for the first time using a crystal with a thickness of 30 µm, and a narrow bandwidth of 0.22 eV (full width at half‐maximum) was obtained at 8.3 keV, which confirmed the functionality of a crystal with such a small thickness. In the nominal bunch‐charge self‐seeding experiment, the histogram of the intensity integrated over a 1 eV bandwidth showed a well defined Gaussian profile, which is evidence of the saturated FEL and a minimal electron‐energy jitter (∼1.2 × 10−4) effect. The corresponding low photon‐energy jitter (∼2.4 × 10−4) of the SASE FEL pulse, which is two times lower than the Pierce parameter, enabled the seeding power to be maximized by maintaining the spectral overlap between SASE FEL gain and the monochromator.
The X-ray free-electron laser of the Pohang Accelerator Laboratory (PAL-XFEL) was opened to users in 2017. Since then, significant progress has been made in PAL-XFEL operation and beamline experiments. This includes increasing the FEL pulse energy, increasing the FEL photon energy, generating self-seeding FEL, and trials of two-color operation. In the beamline, new instruments or endstations have been added or are being prepared. Overall, beamline operation has been stabilized since its initiation, which has enabled excellent scientific results through efficient user experiments. In this paper, we describe details of the recent progress of the PAL-XFEL.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.