Utilization of remote sensing is a new wave of modern agriculture that accelerates plant breeding and research, and the performance of farming practices and farm management. High-throughput phenotyping is a key advanced agricultural technology and has been rapidly adopted in plant research. However, technology adoption is not easy due to cost limitations in academia. This article reviews various commercial unmanned aerial vehicle (UAV) platforms as a high-throughput phenotyping technology for plant breeding. It compares known commercial UAV platforms that are cost-effective and manageable in field settings and demonstrates a general workflow for high-throughput phenotyping, including data analysis. The authors expect this article to create opportunities for academics to access new technologies and utilize the information for their research and breeding programs in more workable ways.
Kenaf (Hibiscus cannabinus L.) is an industrial crop used as a raw material in various fields and is cultivated worldwide. Compared to high potential for its utilization, breeding sector is not vigorous partially due to laborous breeding procedure. Thus, efficient breeding methods are required for varieties that can adapt to various environments and obtain optimal production. For that, identifying kenaf’s characteristics is very important during the breeding process. Here, we investigated if RGB based vegetative index (VI) could be associated with traits for biomass. We used 20 varieties and germplasm of kenaf and RGB images taken with unmanned aerial vehicles (UAVs) for field selection in early and late growth stage. In addition, measuring the stem diameter and the number of nodes confirmed whether the vegetative index value obtained from the RGB image could infer the actual plant biomass. Based on the results, it was confirmed that the individual surface area and estimated plant height, which were identified from the RGB image, had positive correlations with the stem diameter and node number, which are actual growth indicators of the rate of growth further, biomass could also be estimated based on this. Moreover, it is suggested that VIs have a high correlation with actual growth indicators; thus, the biomass of kenaf could be predicted. Interstingly, those traits showing high correlation in the late stage had very low correlations in the early stage. To sum up, the results in the current study suggest a more efficient breeding method by reducing labor and resources required for breeding selection by the use of RGB image analysis obtained by UAV. This means that considerable high-quality research could be performed even with a tight budget. Furthermore, this method could be applied to crop management, which is done with other vegetative indices using a multispectral camera.
Ever since research attention was first paid to phenomics, it has mainly focused on the use of high throughput phenotyping for characterizing traits in an accurate and fast manner. It was recently realized that its use has huge potential in precision agriculture. However, the focus so far has mainly been on ”obtain large data set”, not on “how to analyze them”. Here, the expanded application of high throughput phenotyping combined with special dependence analysis is demonstrated to reveal the hidden field heterogeneity, using a kenaf field. Based on the method used in the study, the results showed that the growth of kenaf in the field was grouped into two, which led to a large variation of sources among replications. This method has potential to be applied to detect hidden heterogeneity, to be utilized and applied in plant breeding not only for better analysis, but also for better management of fields in precision agriculture.
The investigation of quantitative phenotypic traits resulting from the interaction between targeted genotypic traits and environmental factors is essential for breeding selection. Therefore, plot-wise controlled environmental factors must be invariable for accurate identification of phenotypes. However, the assumption of homogeneous variables within the open-field is not always accepted, and requires a spatial dependence analysis to determine whether site-specific environmental factors exist. In this study, spatial dependence within the kenaf breeding field was assessed in a geo-tagged height map derived from an unmanned aerial vehicle (UAV). Local indicators of spatial autocorrelation (LISA) were applied to the height map using Geoda software, and the LISA map was generated in order to recognize the existence of kenaf height status clusters. The spatial dependence of the breeding field used in this study appeared in a specific region. The cluster pattern was similar to the terrain elevation pattern of this field and highly correlated with drainage capacity. The cluster pattern could be utilized to design random blocks based on regions that have similar spatial dependence. We confirmed the potential of spatial dependence analysis on a crop growth status map, derived by UAV, for breeding strategy design with a tight budget.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.