The compositional and quality characteristics of two wheat varieties Triticum dicoccum (Triticum dicoccum var. dicoccum, Triticum dicoccum var. rufum) produced in the Republic of Azerbaijan have been tested and are relatively useful in assessing their applicability to bread production. The wheat species studied, Triticum dicoccum, were found to have a higher protein and cell content, as well as essential proteins of lysine, phenylalanine, leucine and isoleucine, methionine and valine, relative to Gorbustan wheat varieties. The chromatographic method was used to determine the carbohydrate composition of the Triticum dicoccum grain. The following redistribution of low molecular weight carbohydrate fractions is noted: the maltose content is higher, and galactose, glucose and fructose are much lower than those of the modern wheat variety Gorbustan. Such a distribution of carbohydrates can reduce the formation of toxic products when baking bread. In addition, the wheat grain Triticum dicoccum is characterized by a higher content of sterols, in particular β-sitosterol. The antioxidant activity expressed as percentage inhibition of DPPG free radicals in the Triticum dicoccum grain is twice as high as this indicator for wheat of the commercial variety Gorbustan. By scanning electron microscopy, it has been established that the microstructure of the grain surface and the cross section has varietal characteristics. Grain Triticum dicoccum var. rufum has a thicker shell, tighter and tighter, unlike the grain of Triticum dicoccum var. dicoccum. With all the benefits of the wheat grain Triticum dicoccum, its technological properties were even worse. But the use of technological methods to boost gluten will ensure the production of high-quality healthy bread from old wheat grain.
A promising way to increase the use of buckwheat is the wider introduction of technologies for its processing, including grinding of non-hulled grain. It requires the search for new plant materials with more suitable characteristics. In this work, the possibilities to use the grain of a new artificial buckwheat species Fagopyrum hybridum for flour production are studied in comparison with two cultivated species F. tataricum and F. esculentum. Some chemical characteristics of F. hybridum flour were evaluated. According to the size of the kernel fragments in different modes of milling within each species the significant differences were identified within F. esculentum and F. hybridum (p <0.001 and p <0.05, respectively); there were no significant differences within F. tataricum (p >0.1). Fragments of the seed hulls of F. tataricum and F. hybridum compared to ones of F. esculentum were distinguished by the absence of pronounced acute angles. For the cultivated species, amino acid compositions of grain protein of the studied samples manifest no strong deviations from earlier published results. The new species F. hybridum has the amino acid composition similar to ones of the both cultivated species with slight superiority in the content of all essential amino acids. So, the content of Cysteine, Tryptophan, Arginine, Lysine, Methionine, Leucine + Isoleucine, Threonine, Histidine and Valine in seeds of F. hybridum was 5.2, 15.0, 25.8, 30.2, 31.2, 36.0, 38.4, 41.1 and 46.2% higher compared to F. tataricum and 11.1, 43.7, 39.2, 3.7, 31.2, 15.2, 14.8, 20.0, 18.9% higher compared to F. esculentum. Using DPPH it was assessed the antioxidant activity (AOA) of whole grain flour of three buckwheat species and decreasing of the AOA during heating up to 100 °C. After water extraction the AOA was maximal for F. tataricum flour; F. hybridum and F. esculentum manifested similar values with the same decline dynamics during heating. After ethanol extraction the flour of F. hybridum shown higher AOA compared to both cultivated species before temperature treatment (1.3 times) as well as after heating to 100 °C (1.2 times). The results of the analysis of the fractional composition of flour from the whole grain of the three buckwheats shown the fragments of the seed hulls of F. tataricum and F. hybridum compared to ones of F. esculentum were characterized by the absence of pronounced acute angles. Additional experiments are needed to optimize the technology of whole-grain buckwheat flour. But the grain of F. tataricum and F. hybridum looks like more suitable for these purposes than the non-hulled grain of F. esculentum.
Fermentation of wheat grain was carried out for 12 hours at pH 4.5 and a temperature of 50 °C using a complex phytase-based enzyme preparation. The fermentation process has affected the change in the microstructure of the surface and structure of the shells, the aleuron layer and the endosperm of wheat grain. As a result of wetting and soaking of grain in water and a solution of a complex enzyme preparation based on phytase, changes in the polypeptide composition of the protein occurred. The process of fermentation of wheat grain contributed to the growth of antioxidant activity and the number of flavonols compared to native dry grain.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.