We develop a model of budget allocation for permanent and contingent workforce under stochastic demand. The level of permanent capacity is determined at the beginning of the horizon and is kept constant throughout whereas the number of temporary workers to be hired must be decided in each period. Compared to existing budgeting models, this paper explicitly considers a budget constraint. Under the assumption of a restricted budget, the objective is to minimize capacity shortages. When over-expenditures are allowed, both budget deviations and shortage costs are to be minimized. The capacity shortage cost function is assumed to be either linear or quadratic with the amount of shortage, which corresponds to different market structures or different types of services. We thus examine four variants of the problem that we model and solve either approximately or to optimality when possible. A comprehensive simulation study is designed to analyze the behavior of our models when several levels of demand variability and parameter values are considered. The parameters consist of the initial budget level, the unit cost of temporary workers and the budget deviation penalty/reward rates. Varying these parameters produce several trade-off between permanent and temporary workforce levels, and between capacity shortages and budget deviations. Simulation results also show that the quadratic cost function leads to smooth and moderate capacity shortages over the time periods, whereas all shortages are either avoided or accepted when the cost function is linear.
The development of job intermediation and the increasing use of the Internet allow companies to carry out ever quicker capacity changes. In many cases, capacity can be adapted rapidly to the actual workload, which is especially important in production-to-order systems, where inventory cannot be used as a buffer for demand variation. We introduce a set of Markov chain models to represent workload-dependent capacity control policies. We present two analytical approaches to evaluate the policies' due-date performance based on stationary analysis. One provides an explicit expression of throughput time distribution, the other is a fixed-point iteration method that calculates the moments of the throughput time. We compare due-date performance, capacity, capacity switching, and lost sales costs to select optimal policies. We also give insight into which situations a workload-dependent policy is beneficial to introduce. Our results can be used by manufacturing and service industries when establishing a static policy for dynamic capacity planning.
a b s t r a c tWe model a make-to-stock production system that utilizes permanent and contingent capacity to meet non-stationary stochastic demand, where a constant lead time is associated with the acquisition of contingent capacity. We determine the structure of the optimal solution concerning both the operational decisions of integrated inventory and flexible capacity management, and the tactical decision of determining the optimal permanent capacity level. Furthermore, we show that the inventory (either before or after production), the pipeline contingent capacity, the contingent capacity to be ordered, and the permanent capacity are economic substitutes. We also show that the stochastic demand variable and the optimal contingent capacity acquisition decisions are economic complements. Finally, we perform numerical experiments to evaluate the value of utilizing contingent capacity and to study the effects of capacity acquisition lead time, providing useful managerial insights.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.