Intravenous bolus endotoxin elicits a marked but transient increase in plasma TxB2 and 6-keto-PGF1 alpha in a large number of species. A smaller, delayed and more prolonged increase in TxB2 and 6-keto-PGF1 alpha are reported in animals with septic shock, i.e., those with fecal peritonitis or cecal ligation. Thromboxane synthetase inhibitors or antagonists attenuate endotoxin-induced acute cardiopulmonary changes, the delayed increase in serum lysosomal enzymes, fibrin/fibrinogen degradation products and the thrombocytopenia in a number of species. While these drugs increase survival of rats or mice following endotoxin they do not alter survival of rats in septic shock. These results support the hypothesis that TxA2 exerts a pathophysiologic effect in shock following bolus endotoxin. In contrast, nonsteroidal antiinflammatory drugs (NSAID) and dietary essential fatty acid deficiency increase survival of rats subjected to endotoxin shock, and survival time in models of septic shock. These results also suggest that some other cyclooxygenase product(s) is involved in septic shock due to fecal peritonitis or cecal ligation. Preliminary experimental studies indicate salutary effects of leukotriene inhibitors and antagonists in endotoxin shock and in models of acute pulmonary injury. Clinical studies have demonstrated elevated plasma TxB2 and 6-keo-PGF1 alpha concentrations in patients with septic shock, and elevated LTD4 in pulmonary edema fluid of patients with the adult respiratory distress syndrome. In view of these clinical and experimental results, clinical trials of NSAID and/or leukotriene inhibitors/antagonists should be considered.
1 The effects of acute pretreatment with the thromboxane synthetase inhibitor dazoxiben 5 mg/kg intravenously (UK 37248-01) were examined on the acute pulmonary responses of pentobarbitone-anaesthetized cats to E. coli endotoxin 2 mg/kg intravenously. 2 E. coli endotoxin in control, untreated, cats resulted in a marked pulmonary hypertension, an increase in intra-tracheal pressure (at a constant pulmonary inflation volume), an increase in both pulmonary arterial and aortic concentrations of thromboxane B2 (TXB2) and a reduction in systematic arterial P02. 3 Dazoxiben prevented, or markedly reduced, the endotoxin-induced pulmonary release ofTXB2, the decrease in systematic arterial P02 and the pulmonary arterial hypertension, but did not modify the increase in intratracheal pressure.4 These results may suggest that TXA2 is responsible for the endotoxin-induced pulmonary arterial hypertension but that some other arachidonic acid derivative (prostaglandin F2a) is responsible for the reduced lung compliance that follows the acute administration of E. coli endotoxin.
Because leukotrienes and prostaglandins are inflammatory mediators derived from arachidonic acid, their potential role in oleic acid-induced lung injury was evaluated in control and in essential fatty acid-deficient (EFAD) rats depleted of arachidonic acid substrate. In control rats, oleic acid (0.06 ml/kg iv) increased the pulmonary permeability index (measured by scintigraphy) from -10 +/- 13 x 10(-6) s-1 to 217 +/- 20 x 10(-6) s-1 and 118 +/- 13 x 10(-6) s-1 at 5 and 50 min (P less than 0.05), respectively. It also caused arterial hypoxemia at 30 min (P less than 0.05). Compared with saline controls, oleic acid increased bronchoalveolar lavage fluid levels of immunoreactive (i) LTC4/D4, iLTB4, (P less than 0.01), and 6-ketoprostaglandin F1 alpha (6-keto-PGF1 alpha) (P less than 0.05). In EFAD rats, oleic acid failed to significantly increase the lung permeability index at 5 and 50 min. In contrast to control rats, oleic acid failed to cause hypoxemia in the EFAD rats. Bronchoalveolar lavage levels of iLTB4 and i6-keto-PGF1 alpha after oleic acid in EFAD rats were lower compared with oleic acid controls, whereas iLTC4/D4 in the oleic acid EFAD group was not decreased. Treatment with intraperitoneal ethyl arachidonate (400 mg over 2 wk) reversed the resistance of EFAD rats such that the pulmonary edema (P less than 0.05) was evident after oleic acid. This latter group also manifested a significant (P less than 0.05) rise in the bronchoalveolar lavage levels of iLTB4 and i6-keto-PGF1 alpha. These results suggest that arachidonic acid metabolites contribute to oleic acid-induced pulmonary permeability.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.