In this work, model parameterization for coherent manipulation, for serially coupled double quantum dots embedded between ferromagnetic leads (FM-QD1-QD2-FM), is presented. Theoretical model based to the non-equilibrium Green’s function approach is considered. Since the spin current and its spin channels are formulated incorporating the spin polarization and the type of spin configuration on the leads. Our model incorporates the inter-dot hopping, the intra-dot Coulomb correlation, the spin exchange energy and the coupling interactions between the quantum dots and leads. The results concerned to the parallel configuration at strong inter-dot coupling regime shows the preferable coherent state for spin down electrons only at relatively high polarization. While, for weak coupling regime and antiparallel configuration, the decoherent state is dominating. Interesting results have been concluded by calculating the molecular energy levels of the quantum dots. In all our calculations the same spin polarization on the leads is considered. The case of different spin polarization on the lead is also investigated but no unprecedented features are concluded as active region is symmetric.
In this work, theoretical investigation in coherent manipulation throughout local density of states calculation for serially coupled double quantum dots embedded between ferromagnetic leads (FM-QD1-QD2-FM) by using the non-equilibrium Green's function approach. Since the local density of states are formulated incorporating the spin polarization and the type of spin configuration on the leads. Our model incorporates the inter-dot hopping, the intra-dot Coulomb correlation, the spin exchange energy and the coupling interactions between the quantum dots and leads. The results concerned to the parallel configuration at strong inter-dot coupling regime shows that the spin down electrons in the quantum dots may be more coupled coherently if the regime is tuned. The local density of states of the two dots for spin up electrons shows a broad hump with small splitting i.e. the case is decoherent for spin up electrons. In the case of weak interdot coupling it is obvious that the spin dependent density of states on the quantum dots show that the resonances are not well splitted. For the antiparallel configuration in the strong coupling regime, the spin dependent density of states of the double quantum dots show four peaks but with broaden and overlapping. In the case of weak coupling regime, the total spin dependent density of states, which have two peaks with certain board, one can conclude that the states are not coupled coherently. The case of the antiferromagnetic nature of the spin exchange interaction, our calculations for the parallel and antiparallel configurations (in strong and weak regimes) show a decoherence state.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.