The mechanisms underlying the stimulatory effects of capsaicin on the contractility of the guinea-pig heart were studied in vitro. Capsaicin (10(-7) to 10(-5) M) caused an increased overflow of immunoreactive material, suggesting release of calcitonin gene-related peptide (CGRP)-and neurokinin A (NKA)-like immunoreactivity (-LI), but not of neuropeptide Y (NPY)-LI from the isolated Langendorff-perfused whole heart. The capsaicin-induced release was calcium-dependent. During exposure to capsaicin, the heart rate was increased, while the contractile force was reduced. In addition to releasing CGRP and NKA-LI, potassium (60 mM) also increased the overflow of NPY-LI. The potassium-induced release of peptides was less calcium-dependent than the response to capsaicin. Considerably higher tissue levels of CGRP-LI were found in the atria (about 30 pmol g-1) than in the ventricles (about 10 pmol g-1). In experiments on the right atria using transmembrane action-potential recordings of myocytes, CGRP induced a prolongation of the action potential concomitantly with an increase in rate and contractile force, which was similar to the effect of noradrenaline. Furthermore, CGRP increased the contractile force and relaxation velocity of the electrically stimulated atria. Capsaicin (10(-7) M) also increased the duration of the atrial action potential. In conclusion, CGRP-like material is released by capsaicin from the isolated guinea-pig heart. Both CGRP and capsaicin prolong the plateau phase of the action potential of atrial myocytes. Therefore, the present data give further evidence that CGRP release from sensory nerves within the heart underlies the cardiostimulatory actions of capsaicin.
The aim of this study was to investigate the impact of increased mRNA levels encoding GIRK1 in breast tumours on GIRK protein expression. mRNA levels encoding hGIRK1 and hGIRK4 in the MCF7, MCF10A and MDA-MB-453 breast cancer cell lines were assessed and the corresponding proteins detected using Western blots. cDNAs encoding for four hGIRK1 splice variants (hGIRK1a, 1c, 1d and 1e) were cloned from the MCF7 cell line. Subcellular localisation of fluorescence labelled hGIRK1a-e and hGIRK4 and of endogenous GIRK1 and GIRK4 subunits was monitored in the MCF7 cell line. All hGIRK1 splice variants and hGIRK4 were predominantly located within the endoplasmic reticulum. Heterologous expression in Xenopus laevis oocytes and two electrode voltage clamp experiments together with confocal microscopy were performed. Only the hGIRK1a subunit was able to form functional GIRK channels in connection with hGIRK4. The other splice variants are expressed, but exert a dominant negative effect on heterooligomeric channel function. Hence, alternative splicing of the KCNJ3 gene transcript in the MCF7 cell line leads to a family of mRNA's, encoding truncated versions of the hGIRK1 protein. The very high abundance of mRNA's encoding GIRK1 together with the presence of GIRK1 protein suggests a pathophysiological role in breast cancer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.