Intrafraction patient motion is much more likely in intensity-modulated radiation therapy (IMRT) than in conventional radiotherapy primarily due to longer beam delivery times in IMRT treatment. In this study, we evaluated the uncertainty of intrafraction patient displacement in CNS and head and neck IMRT patients. Immobilization is performed in three steps: (1) the patient is immobilized with thermoplastic facemask, (2) the patient displacement is monitored using a commercial stereotactic infrared IR camera (ExacTrac, BrainLab) during treatment, and (3) repositioning is carried out as needed. The displacement data were recorded during beam-on time for the entire treatment duration for 5 patients using the camera system. We used the concept of cumulative time versus patient position uncertainty, referred to as an uncertainty time histogram (UTH), to analyze the data. UTH is a plot of the accumulated time during which a patient stays within the corresponding movement uncertainty. The University of Florida immobilization procedure showed an effective immobilization capability for CNS and head and neck IMRT patients by keeping the patient displacement less than 1.5 mm for 95% of treatment time (1.43 mm for 1, and 1.02 mm for 1, and less than 1.0 mm for 3 patients). The maximum displacement was 2.0 mm.
We have formulated a unified dosimetry index (UDI) that computes, for any given treatment plan, its deviations in terms of dose coverage, conformity, homogeneity, and dose gradient vis‐à‐vis an ideal plan (which we define as a dosimetry plan of perfect dose coverage, conformity, homogeneity, and step‐wise fall‐off to zero dose outside the planning target volume). In order to validate the UDI scoring system, 21 stereotactic cranial radiosurgery cases were evaluated retrospectively. The cases were planned on the BrainSCAN treatment planning system (BrainLAB, Feldkirchen, Germany) using 6 to 8 non‐coplanar static beams collimated with the micro multi‐leaf collimator (mMLC). We suggest a technique for creating a ranking system that can be utilized for plan evaluation and comparison between multiple plans. Under this system treatment plans are classified as “excellent”, “good”, “average”, or “poor”. The proposed ranking system can be utilized as a general guide for generating an optimal dosimetry plan for external beam radiation therapy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.