Context. The method of distance determination of eclipsing binaries consists in combining the radii of both components determined from spectro-photometric observations with their respective angular diameters derived from the surface brightness-color relation (SBC). However, the largest limitation of the method comes from the uncertainty on the SBC relation: about 2% for late-type stars (or 0.04 magnitude) and more than 10% for early-type stars (or 0.2 mag). Aims. The aim of this work is to improve the SBC relation for early-type stars in the −1 ≤ V − K ≤ 0 color domain, using optical interferometry. Methods. Observations of eight B-and A-type stars were secured with the VEGA/CHARA instrument in the visible. The derived uniform disk angular diameters were converted into limb darkened angular diameters and included in a larger sample of 24 stars, already observed by interferometry, in order to derive a revised empirical relation for O, B, A spectral type stars with a V − K color index ranging from −1 to 0. We also took the opportunity to check the consistency of the SBC relation up to V − K 4 using 100 additional measurements. Results. We determined the uniform disk angular diameter for the eight following stars: γ Ori, ζ Per, 8 Cyg, ι Her, λ Aql, ζ Peg, γ Lyr, and δ Cyg with V − K color ranging from −0.70 to 0.02 and typical precision of about 1.5%. Using our total sample of 132 stars with V − K colors index ranging from about −1 to 4, we provide a revised SBC relation. For late-type stars (0 ≤ V − K ≤ 4), the results are consistent with previous studies. For early-type stars (−1 ≤ V − K ≤ 0), our new VEGA/CHARA measurements combined with a careful selection of the stars (rejecting stars with environment or stars with a strong variability), allows us to reach an unprecedented precision of about 0.16 magnitude or 7% in terms of angular diameter. Conclusions. We derive for the first time a SBC relation for stars between O9 and A3, which provides a new and reliable tool for the distance scale calibration.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.