Solid-state quantum light sources are being intensively investigated for applications in quantum technology. A key challenge is to extract light from host materials with high refractive index, where efficiency is limited by refraction and total internal reflection. Here we show that an index-matched solid immersion lens can, if placed sufficiently close to the semiconductor, extract light coupled through the evanescent field at the surface. Using both numerical simulations and experiments, we investigate how changing the thickness of the spacer between the semiconductor and lens impacts the collection efficiency (CE). Using automatic selection and measurement of 100 s of individually addressable colour centres in several aluminium nitride samples we demonstrate spacer-thickness dependent photon CE enhancement, with a mean enhancement factor of 4.2 and a highest measured photon detection rate of 743±4kcps.
Color centers in wide-bandgap semiconductors are a promising class of solid-state quantum light source, many of which operate at room temperature. We examine a family of color centers in aluminum nitride, which emits close to 620 nm. We present a technique to rapidly map an ensemble of these single photon emitters, identifying all emitters, not just those with absorption dipole parallel to the laser polarization. We demonstrate a fast technique to determine their absorption polarization orientation in the c-plane, finding they are uniformly distributed in orientation, in contrast to many other emitters in crystalline materials.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.