BackgroundPenicillium griseofulvum is associated in stored apples with blue mould, the most important postharvest disease of pome fruit. This pathogen can simultaneously produce both detrimental and beneficial secondary metabolites (SM). In order to gain insight into SM synthesis in P. griseofulvum in vitro and during disease development on apple, we sequenced the genome of P. griseofulvum strain PG3 and analysed important SM clusters.ResultsPG3 genome sequence (29.3 Mb) shows that P. griseofulvum branched off after the divergence of P. oxalicum but before the divergence of P. chrysogenum. Genome-wide analysis of P. griseofulvum revealed putative gene clusters for patulin, griseofulvin and roquefortine C biosynthesis. Furthermore, we quantified the SM production in vitro and on apples during the course of infection. The expression kinetics of key genes of SM produced in infected apple were examined. We found additional SM clusters, including those potentially responsible for the synthesis of penicillin, yanuthone D, cyclopiazonic acid and we predicted a cluster putatively responsible for the synthesis of chanoclavine I.ConclusionsThese findings provide relevant information to understand the molecular basis of SM biosynthesis in P. griseofulvum, to allow further research directed to the overexpression or blocking the synthesis of specific SM.Electronic supplementary materialThe online version of this article (doi:10.1186/s12864-015-2347-x) contains supplementary material, which is available to authorized users.
The efficacy of thyme and savory essential oils were investigated against Botrytis cinerea on apple fruit. Apples treated with thyme and savory essential oils showed significantly lower gray mold severity and incidence. Thyme essential oil at 1% concentration showed the highest efficacy, with lower disease incidence and smaller lesion diameter. The expression of specific pathogenesis-related (PR) genes PR-8 and PR-5 was characterized in apple tissues in response to thyme oil application and B. cinerea inoculation. After 6 h of pathogen inoculation, thyme essential oil induced a 2.5-fold increase of PR-8 gene expression compared to inoculated fruits. After 24 h of inoculation, PR-8 was highly induced (7-fold) in both thyme oil-treated and untreated apples inoculated with B. cinerea. After 48 h of inoculation, PR-8 expression in thyme-treated and inoculated apples was 4- and 6-fold higher than in inoculated and water-treated apples. Neither thyme oil application nor B. cinerea inoculation markedly affected PR-5 expression. These results suggest that thyme oil induces resistance against B. cinerea through the priming of defense responses in apple fruit, and the PR-8 gene of apple may play a key role in the mechanism by which thyme essential oil effectively inhibits gray mold in apple fruit.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.