Cardiac cell therapy with mesenchymal stem cells (MSCs) represents a promising treatment approach for endstage heart failure. However, little is known about the underlying mechanisms and the fate of the transplanted cells. The objective of the presented work is to determine the feasibility of magnetic resonance imaging (MRI) and in vivo monitoring after transplantation into infarcted mouse hearts using a clinical 3.0 T MRI device. The labeling procedure of bone marrow-derived MSCs with micron-sized paramagnetic iron oxide particles (MPIOs) did not affect the viability of the cells and their cell type-defining properties when compared to unlabeled cells. Using a clinical 3.0 T MRI scanner equipped with a dedicated small animal solenoid coil, 10 5 labeled MSCs could be detected and localized in the mouse hearts for up to 4 weeks after intramyocardial transplantation. Weekly ECG-gated scans using T1-weighted sequences were performed, and left ventricular function was assessed. Histological analysis of hearts confirmed the survival of labeled MSCs in the target area up to 4 weeks after transplantation. In conclusion, in vivo tracking of labeled MSCs using a clinical 3.0 T MRI scanner is feasible. In combination with assessment of heart function, this technology allows the monitoring of the therapeutic efficacy of regenerative therapies in a small animal model.
To examine in vitro whether an assessment of flow in normal and obstructed vessels is essentially possible using modern multislice CT-scanners. An experimental model allowed known stenoses to be perfused at defined flow rates. Aorta and coronary arteries were simulated by silicone tubes. A pulsatile pump was used to perfuse water through the system with intermittent injection of a bolus of radio-opaque contrast agent. CT-measurements were carried out with slice orientation perpendicular to the tubes. 50-90% concentric stenoses were examined 5 times at 4 different stenosis slice distances. A mathematical algorithm calculated the temporal density changes within a ROI in the tube cross-sections. Quantitative assessment of the data simultaneously acquired with the 16-slice system for the "coronary" and "aortal" time-density curves showed that the model allowed for exclusion of a ≥ 80% stenosis grade with a 99% probability when the slopes of the density increase quotient was > 0.79; a stenosis grade of ≥ 90% could be excluded when the slopes of the density increase quotient was > 0.52. A Quotient > 0.94 for "peak density" was associated with a 99% probability of a stenosis grade ≥ 70%. The 64-slice system allowed stenosis grades of ≥ 80% to be discriminated from lower grades. The general feasibility of the in vitro approach was verified in an in vivo model. The spatial, contrast and temporal resolution of CT scanners with at least 16 detector rows enables qualitative and semiquantitative assessment of stenotic changes in flow.
The efficacy of forced-air warming systems is primarily determined by the blanket. Modern power units provide sufficient heat energy to maximize the ability of the blanket to warm the patient. Optimizing blanket design by optimizing the mean temperature gradient between the blanket and the manikin (or any other surface) with a very homogeneous temperature distribution in the blanket will enable the manufacturers to develop better forced-air warming systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.