We have developed an accelerator architecture that can serve as the basis of the design of petawatt-class z-pinch drivers. The architecture has been applied to the design of two z-pinch accelerators, each of which can be contained within a 104-m-diameter cylindrical tank. One accelerator is driven by slow ( 1 s) Marx generators, which are a mature technology but which necessitate significant pulse compression to achieve the short pulses ( 1 s) required to drive z pinches. The other is powered by linear transformer drivers (LTDs), which are less mature but produce much shorter pulses than conventional Marxes. Consequently, an LTD-driven accelerator promises to be (at a given pinch current and implosion time) more efficient and reliable. The Marx-driven accelerator produces a peak electrical power of 500 TW and includes the following components: (i) 300 Marx generators that comprise a total of 1:8 10 4 capacitors, store 98 MJ, and erect to 5 MV; (ii) 600 water-dielectric triplate intermediate-store transmission lines, which also serve as pulse-forming lines; (iii) 600 5-MV laser-triggered gas switches; (iv) three monolithic radial-transmission-line impedance transformers, with triplate geometries and exponential impedance profiles; (v) a 6-level 5.5-m-diameter 15-MV vacuum insulator stack; (vi) six magnetically insulated vacuum transmission lines (MITLs); and (vii) a triple-post-hole vacuum convolute that adds the output currents of the six MITLs, and delivers the combined current to a z-pinch load. The accelerator delivers an effective peak current of 52 MA to a 10-mm-length z pinch that implodes in 95 ns, and 57 MA to a pinch that implodes in 120 ns. The LTD-driven accelerator includes monolithic radial transformers and a MITL system similar to those described above, but does not include intermediate-store transmission lines, multimegavolt gas switches, or a laser trigger system. Instead, this accelerator is driven by 210 LTD modules that include a total of 1 10 6 capacitors and 5 10 5 200-kV electrically triggered gas switches. The LTD accelerator stores 182 MJ and produces a peak electrical power of 1000 TW. The accelerator delivers an effective peak current of 68 MA to a pinch that implodes in 95 ns, and 75 MA to a pinch that implodes in 120 ns. Conceptually straightforward upgrades to these designs would deliver even higher pinch currents and faster implosions.
The three-dimensional, particle-in-cell code QUICKSILVER [J. P. Quintenz et al., Lasers Part. Beams 12, 283 (1994)] is now being used to simulate the inner region of the Z accelerator [R. B. Spielman et al., Phys. Plasmas 5, 2105 (1998)] at Sandia National Laboratories. The simulations model electron flow and anode losses in the double post-hole convolute, which couples four radial, magnetically insulated transmission lines (MITLs) in parallel to a single MITL that drives a Z-pinch load. To efficiently handle the large range in the magnetic field, 0<B<200 T, the particle pusher is modified to subcycle the electron advance relative to the field solver. Results from a series of simulations using a constant-impedance load are presented. The locations of electron losses to the anode in the convolute are in qualitative agreement with damage to the Z hardware. The electron energy deposited in these anode regions rapidly heats the surface to temperatures above 400 °C—the threshold at which anode plasma formation is expected.
We have developed a system of differential-output monitors that diagnose current and voltage in the vacuum section of a 20-MA 3-MV pulsed-power accelerator. The system includes 62 gauges: 3 current and 6 voltage monitors that are fielded on each of the accelerator's 4 vacuum-insulator stacks, 6 current monitors on each of the accelerator's 4 outer magnetically insulated transmission lines (MITLs), and 2 current monitors on the accelerator's inner MITL. The inner-MITL monitors are located 6 cm from the axis of the load. Each of the stack and outer-MITL current monitors comprises two separate B-dot sensors, each of which consists of four 3-mm-diameter wire loops wound in series. The two sensors are separately located within adjacent cavities machined out of a single piece of copper. The high electrical conductivity of copper minimizes penetration of magnetic flux into the cavity walls, which minimizes changes in the sensitivity of the sensors on the 100-ns time scale of the accelerator's power pulse. A model of flux penetration has been developed and is used to correct (to first order) the B-dot signals for the penetration that does occur. The two sensors are designed to produce signals with opposite polarities; hence, each current monitor may be regarded as a single detector with differential outputs. Common-mode-noise rejection is achieved by combining these signals in a 50-balun. The signal cables that connect the B-dot monitors to the balun are chosen to provide reasonable bandwidth and acceptable levels of Compton drive in the bremsstrahlung field of the accelerator. A single 50-cable transmits the output signal of each balun to a double-wall screen room, where the signals are attenuated, digitized (0:5-ns=sample), numerically compensated for cable losses, and numerically integrated. By contrast, each inner-MITL current monitor contains only a single B-dot sensor. These monitors are fielded in opposite-polarity pairs. The two signals from a pair are not combined in a balun; they are instead numerically processed for common-mode-noise rejection after digitization. All the current monitors are calibrated on a 76-cmdiameter axisymmetric radial transmission line that is driven by a 10-kA current pulse. The reference current is measured by a current-viewing resistor (CVR). The stack voltage monitors are also differentialoutput gauges, consisting of one 1.8-cm-diameter D-dot sensor and one null sensor. Hence, each voltage monitor is also a differential detector with two output signals, processed as described above. The voltage monitors are calibrated in situ at 1.5 MVon dedicated accelerator shots with a short-circuit load. Faraday's law of induction is used to generate the reference voltage: currents are obtained from calibrated outer-MITL B-dot monitors, and inductances from the system geometry. In this way, both current and voltage measurements are traceable to a single CVR. Dependable and consistent measurements are thus obtained with this system of calibrated diagnostics. On accelerator shots that deliver 22 MA...
We have developed a relativistic-fluid model of the flow-electron plasma in a steady-state onedimensional magnetically insulated transmission line (MITL). The model assumes that the electrons are collisional and, as a result, drift toward the anode. The model predicts that in the limit of fully developed collisional flow, the relation between the voltage V a , anode current I a , cathode current I k , and geometric impedance Z 0 of a 1D planar MITL can be expressed as V a I a Z 0 h, where h 1=4 ÿ 1 1=2 ÿ lnb 2 ÿ 1 1=2 c=2 ÿ 1 and I a =I k . The relation is valid when V a * 1 MV. In the minimally insulated limit, the anode current I a;min 1:78V a =Z 0 , the electron-flow current I f;min 1:25V a =Z 0 , and the flow impedance Z f;min 0:588Z 0 . {The electronflow current I f I a ÿ I k . Following Mendel and Rosenthal [Phys. Plasmas 2, 1332 (1995)], we define the flow impedance Z f as V a =I 2 a ÿ I 2 k 1=2 .g In the well-insulated limit (i.e., when I a I a;min ), the electron-flow current I f 9V 2 a =8I a Z 2 0 and the flow impedance Z f 2Z 0 =3. Similar results are obtained for a 1D collisional MITL with coaxial cylindrical electrodes, when the inner conductor is at a negative potential with respect to the outer, and Z 0 & 40 . We compare the predictions of the collisional model to those of several MITL models that assume the flow electrons are collisionless. We find that at given values of V a and Z 0 , collisions can significantly increase both I a;min and I f;min above the values predicted by the collisionless models, and decrease Z f;min . When I a I a;min , we find that, at given values of V a , Z 0 , and I a , collisions can significantly increase I f and decrease Z f . Since the steady-state collisional model is valid only when the drift of electrons toward the anode has had sufficient time to establish fully developed collisional flow, and collisionless models assume there is no net electron drift toward the anode, we expect these two types of models to provide theoretical bounds on I a , I f , and Z f .
We have developed an empirical electrical-breakdown relation that can be used to design large-area water-insulated pulsed-power systems. Such systems often form an integral part of multiterawatt pulsedpower accelerators, and may be incorporated in future petawatt-class machines. We find that complete dielectric failure is likely to occur in water between a significantly field-enhanced anode and a lessenhanced cathode when E p 0:3300:026 eff 0:135 0:009. In this expression E p V p =d is the peak value in time of the spatially averaged electric field between the anode and cathode (in MV=cm), V p is the peak voltage across the electrodes, d is the distance between the anode and cathode, and eff is the temporal width (in s) of the voltage pulse at 63% of peak. This relation is based on 25 measurements for which 1 V p 4:10 MV, 1:25 d 22 cm, and 0:011 eff 0:6 s. The normalized standard deviation of the differences between these measurements and the associated predictions of the relation is 12%.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.