We have studied the formation of adducts upon carboplatin treatment of isolated DNA and in cells. The major adduct formed in vitro, determined with atomic absorption spectroscopy and enzyme-linked immunosorbent assay, was the intrastrand cross-link cis-Pt(NH3)2d(pGpG)(Pt-GG) (58%). cis-Pt-(NH3)2d(pApG) (Pt-AG) (11%), cis-Pt(NH3)2d(GMP)2 (G-Pt-G) (9%), and monofunctionally bound platinum (cis-Pt(NH3)3dGMP (Pt-G), 22%) were formed in smaller amounts. These relative occurrences of the adducts, average values found between 1 and 16 h of incubation, are comparable with those after incubation with cisplatin. The formation of carboplatin-DNA adducts was slow, and about 230-fold more carboplatin than cisplatin (molar dose) was required to obtain equal levels of platination after 4 h of incubation. However, less than 20 times more carboplatin was needed to obtain equal levels of cytotoxicity after 1 h of exposure of CHO cells. The percentages of the carboplatin-DNA adducts after 7-12 h postincubation of the cells (determined with ELISA), Pt-GG (30%), Pt-AG (16%), G-Pt-G (40%), and Pt-G (14%), were different from those of the in vitro data. After 12 h postincubation, the number of interstrand cross-links (determined by alkaline elution) amounted to about 10% of the G-Pt-G adducts and 3-4% of the total amount of adducts. The immunocytochemical detection (with antiserum NKI-A59) of the platinum-DNA modifications showed a pattern similar to that found for the various bifunctional adducts: the initially low levels slowly increased to maximum values within 7-12 h and then slowly decreased. In conclusion, carboplatin forms the same bifunctional adducts as cisplatin.(ABSTRACT TRUNCATED AT 250 WORDS)
In order to provide a quantitative basis for pretreatment and therapy of intoxications with sulfur mustard (SM) the toxicokinetics of this agent as well as its major DNA-adduct were studied in male hairless guinea pigs for the intravenous, respiratory and percutaneous routes. The study comprised measurement of the concentration-time course of SM in blood and measurement of the concentrations of intact SM and its adduct to guanine in various tissues at several time points after administration of, or exposure to SM. SM was analyzed in blood and tissues by gas chromatography with automated thermodesorption injection and mass-spectrometric detection. DNA-adducts were measured via an immuno-slot-blot method. In contrast with nerve agents of the phosphofluoridate type, SM partitions strongly to various organs, especially the lung, spleen, liver and bone marrow. The respiratory toxicity of SM appears to be local, rather than systemic. Surprisingly, the maximum concentration of SM in blood upon percutaneous exposure to 1 LCt50 (10,000 mg.min.m-3, estimated) is approximately 6-fold higher than that for nose--only exposure to 3 LCt50 (2,400 mg.min.m-3). Pretreatment of hairless guinea pigs with the potential scavengers N-acetyl cysteine or cysteine isopropyl ester did not significantly increase the LCt50-value for nose--only exposure to SM vapor.
Host defence peptides (HDPs) are considered to be excellent candidates for the development of novel therapeutic agents. Recently, it was demonstrated that the peptide C1-15, an N-terminal segment of chicken HDP cathelicidin-2, exhibits potent antibacterial activity while lacking cytotoxicity towards eukaryotic cells. In the present study, we report that C1-15 is active against bacteria such as Bacillus anthracis and
In order to determine the nature of the cytotoxic lesion(s) formed by the antitumour drugs cisplatin and carboplatin, a comparative study was made of bifunctional DNA-adduct formation by these drugs. The kinetics of bifunctional cisplatin adduct formation were studied with DNA in vitro and in cultured Chinese hamster ovary (CHO) cells. Prior to adduct measurements with AAS in in vitro platinated DNA and with ELISA in cellular DNA, the monoadducts were inactivated with thiourea (10 mM; 1 h at 37 degrees C). The data indicated that the conversion of monofunctional to bifunctional adducts, with t1/2 of approximately 2 h (37 degrees C), leads to maximum intrastrand adduct levels after approximately 4-6 h postincubation. This interval coincided with the period during which the cytotoxic effect of cisplatin could be reduced by a 1 h 10 mM thiourea post-incubation of the cells. The formation of interstrand crosslinks continued for approximately 7 h of post-incubation; then these amounted to approximately 2% of the total DNA adducts. When a DNA sample was dialysed against 0.1 M NH4HCO3 (16 h, 37 degrees C) immediately after cisplatin treatment, in order to block mono- to bifunctional adduct conversion, adduct levels were found similar to those after the 4-6 h post-incubation. From this it is clear that the high values reported earlier for bifunctional cisplatin adducts in such DNA samples are not correct. These values apparently represent the amounts of adducts that eventually would have been formed during post-incubation in DNA in vitro but also in cells in the absence of cellular repair. The cisplatin data of CHO cells were compared with those after treatment of the cells with equitoxic doses of carboplatin. The data indicate that after 12 h post-incubation, when all bifunctional adducts are formed, the total amount of the various bifunctional adducts after cisplatin treatment (37.5 +/- 4.5 fmol/micrograms DNA) was in the same range as that after carboplatin (32.8 +/- 6.3 fmol/micrograms DNA). However, because the relative occurrences of the adducts were different, it could also be concluded that if one of the diadducts were exclusively responsible for the cytotoxic effect of these platinum antitumour drugs, Pt-AG is the only likely candidate.
The formation and persistence of platinum-DNA adducts were studied with immuno(cyto)chemical methods in male and female Sprague-Dawley rats treated with a single i.p. dose of carboplatin. Linear dose-effect curves were observed for kidney and liver with an immunocytochemical assay using NKI-A59 antiserum that recognizes intrastrand cross-links. With this method, no staining of the nuclei due to platinum-DNA damage could be observed in the spleen, testis, uterus, or ovary after administration of up to 80 mg/kg carboplatin. A homogeneous staining of the nuclei in the liver was observed. The nuclear staining in the kidney was somewhat more intense but less homogeneous, with small groups of intensely stained nuclei occasionally being seen in the outer cortex. An approximately 15 to 20-times lower dose of cisplatin than of carboplatin was needed to reach equal staining levels in the liver and kidney. Plateau staining levels in both tissues were reached at between approximately 8 and 48 h after administration of the carboplatin. This was followed by a significant reduction in the kidney samples, whereas the staining levels in the liver section seemed to be more persistent. No major difference was observed between male and female rats in the formation and removal of DNA damage in these tissues. The levels of the various DNA adducts were measured with a competitive ELISA in liver, kidney, spleen, testis, and combined ovary/uterus samples collected at 8 and 48 h after carboplatin administration. At both 8 and 48 h, the highest platination levels were observed in the kidney, followed--in decreasing order--by the liver, combined uterus and ovary samples, spleen, and testis. At 8 h after administration of carboplatin, the relative occurrence of the bifunctional adducts Pt-GG (34%), Pt-AG (27%), and G-Pt-G (32%), was similar in all tissues. The same held for the monoadducts that amounted to about 7% of the total DNA platination. These data indicate that in the first few hours after carboplatin treatment, no preference for the formation of Pt-GG adducts was observed, which confirms our earlier observations obtained with cultured cells. When the total DNA-platination levels (calculated from the sum of the adducts) seen at 8 and 48 h after treatment were compared, a substantial decrease in DNA platination was observed in the kidney (37%), liver (30%) and ovary/uterus (39%), whereas the repair levels in the testis (9%) and, probably, the spleen (18%) were substantially lower. In all tissues studied, only the relative occurrence of the Pt-GG adducts increased between 8 and 48 h, and as a result, at 48 h, after carboplatin administration the Pt-GG adduct was the major adduct persisting in the DNA samples.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.