An edge-based smoothed finite element method (ES-FEM) using triangular elements was recently proposed to improve the accuracy and convergence rate of the existing standard finite element method (FEM) for the elastic solid mechanics problems. In this paper, the ES-FEM is extended to more complicated visco-elastoplastic analyses using the von-Mises yield function and the Prandtl-Reuss flow rule. The material behavior includes perfect visco-elastoplasticity and visco-elastoplasticity with isotropic and linear kinematic hardening. The formulation shows that the bandwidth of stiffness matrix of the ES-FEM is larger than that of the FEM, and hence the computational cost of the ES-FEM in numerical examples is larger than that of the FEM for the same mesh. However, when the efficiency of computation (computation time for the same accuracy) in terms of a posteriori error estimation is considered, the ES-FEM is more efficient than the FEM.Keywords Numerical methods · Edge-based smoothed finite element method (ES-FEM) · Finite element method (FEM) · Strain smoothing technique · Visco-elastoplastic analysis
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.