The dorsal lingual surfaces of adult owl (Strix uralensis) were examined by scanning electron microscopy. The length of the tongue was about 2 cm. The tip of the tongue of the owl was bifid. Three parts were distinguished in the tongue of the owl: the apex, the body and the root of the tongue. The conical region between the lingual apex and lingual root was a very wide area. There were thread-shaped processes/cells of epithelium in the lingual apex. The small or large conical papillae were observed on the lingual body. The many openings of the lingual glands existed in the lingual body and lingual root.
Our purpose in this study is to segment the rectus abdominis muscle region in X-ray CT images, and we propose a novel recognition method based on the shape model. In this method, three steps are included in the segmentation process. The first is to generate a shape model for the rectus abdominis muscle. The second is to recognize anatomical feature points corresponding to the origin and insertion of the muscle, and the third is to segment the rectus abdominis muscles based on the shape model. We generated the shape model from 20 CT cases and tested the model to recognize the muscle in 20 other CT cases. The average values for the Jaccard similarity coefficient (JSC) and true segmentation coefficient (TSC) were 0.841 and 0.863, respectively. The results suggest the validity of the model-based segmentation for the rectus abdominis muscle.
We examined trabecular and cortical bone in the senescence-accelerated mouse prone 6 (SAMP6) murine model of senile osteoporosis after treatment with human PTH 1-34. Sixteen-week-old female SAMP6 mice were assigned to control and PTH groups. PTH (20 microg/kg) was administered sc 3 times a week for 12 weeks. The control mouse strain, senescence-accelerated mouse resistant 1 (SAMR1), was used for comparison. The femoral metaphysis and diaphysis were used to measure bone mineral density (BMD), analyze the trabecular and the cortical structure by micro-computed tomography, and for conducting the bone strength test. PTH significantly attenuated the loss of BMD, improved the trabecular bone microstructure, and increased the bone strength in the femoral metaphysis. We did not find any differences in the bone strength of the femoral diaphysis after PTH treatment, although the cortical bone volume and cortical thickness were improved. Although the cortical thickness increased, the cortical bone density decreased, likely because of the increase of cortical porosity in the distal metaphysis after administration of PTH.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.