Several cellular events cause permanent or transient changes in inherent magnetic and density properties of cells. Characterizing these changes in cell populations is crucial to understand cellular heterogeneity in cancer, immune response, infectious diseases, drug resistance, and evolution. Although magnetic levitation has previously been used for macroscale objects, its use in life sciences has been hindered by the inability to levitate microscale objects and by the toxicity of metal salts previously applied for levitation. Here, we use magnetic levitation principles for biological characterization and monitoring of cells and cellular events. We demonstrate that each cell type (i.e., cancer, blood, bacteria, and yeast) has a characteristic levitation profile, which we distinguish at an unprecedented resolution of 1 × 10. We have identified unique differences in levitation and density blueprints between breast, esophageal, colorectal, and nonsmall cell lung cancer cell lines, as well as heterogeneity within these seemingly homogenous cell populations. Furthermore, we demonstrate that changes in cellular density and levitation profiles can be monitored in real time at single-cell resolution, allowing quantification of heterogeneous temporal responses of each cell to environmental stressors. These data establish density as a powerful biomarker for investigating living systems and their responses. Thereby, our method enables rapid, density-based imaging and profiling of single cells with intriguing applications, such as label-free identification and monitoring of heterogeneous biological changes under various physiological conditions, including antibiotic or cancer treatment in personalized medicine.
We review the use of magnetic micro- and nanoparticles ('magnetic beads') in microfluidic systems for ultrasensitive protein detection. During recent years magnetic beads have been used frequently in immunoassays, either as mobile substrates on which the target antigen is captured, as detection labels, or simultaneously as substrates and labels. The major part of the reviewed work has as application the detection of antibodies or disease biomarkers in serum or of biotoxins from food samples. Several of the most sensitive assays allow protein detection down to fg mL(-1) concentrations. We benchmark the performance of these microfluidic magnetic bead-based assays with the most promising earlier work and with alternative solutions.
A simple, yet powerful magnetic‐levitation‐based device is reported for real‐time, label‐free separation, as well as high‐resolution monitoring of cell populations based on their unique magnetic and density signatures. This method allows a wide variety of cellular processes to be studied, accompanied by transient or permanent changes in cells' fundamental characteristics as a biological material.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.