This study was done to see whether any association between SIDS and respiratory viruses might be more obvious in Canterbury where the cot death rate is so high (about seven per thousand live births). The numbers of common respiratory virus identifications for the eight year period July 1981 to June 1989 were analysed for associations with cot death. The identifications were from inpatients at the Christchurch Public Hospital and other community sources in Canterbury. Weak associations were found with respiratory syncytial virus (r = 0.3), influenza A (r = 0.3) and influenza B (r = 0.2). However, the associations are overwhelmed by the effect of the month of the year. A high rate of respiratory virus infection cannot be invoked as the explanation for our high SIDS rate.
A new type of internal combustion engine and its thermodynamic cycle are introduced. The core of the engine is a nutating nonrotating disk, with the center of its hub mounted in the middle of a Z-shaped shaft. The two ends of the shaft rotate, while the disk nutates. The motion of the disk circumference prescribes a portion of a sphere. A portion of the area of the disk is used for intake and compression, a portion is used to seal against a center casing, and the remaining portion is used for expansion and exhaust. The compressed air is admitted to an external accumulator, and then into an external combustion chamber before it is admitted to the power side of the disk. The accumulator and combustion chamber are kept at constant pressures. The engine has a few analogies with piston-engine operation, but like a gas turbine it has dedicated spaces and devices for compression, burning, and expansion. The thermal efficiency is similar to that of comparably sized simple-cycle gas turbines and piston engines. For the same engine volume and weight, this engine produces less specific power than a simple-cycle gas turbine, but approximately twice the power of a two-stroke engine and four times the power of a four-stroke engine. The engine has advantages in the 10 kW to 200 kW power range. This paper introduces the geometry and thermodynamic model for the engine, presents typical performance curves, and discusses the relative advantages of this engine over its competitors.
The nutating engine is a new type of internal combustion engine. The engine has unique advantages over conventional piston engines and gas turbines in small power ranges suitable for unmanned aerial vehicles (UAV), and other applications. This publication is the original presentation of the performance potential of the simplest version of the engine, a one-disk engine operating at constant compression ratio, for light airframe propulsion. In its basic configuration the core of the engine is a nutating nonrotating disk, with the center of its hub mounted in the middle of a Z-shaped shaft. The two ends of the shaft rotate, while the disk “nutates,” performs a wobbling motion without rotating around its axis. The motion of the disk circumference prescribes a portion of a sphere. A portion of the area of the disk is used for intake and compression, a portion is used to seal against a center casing, and the remaining portion is used for expansion and exhaust. The compressed air is admitted to an external accumulator, and then into an external combustion chamber before it is admitted to the power side of the disk. The external combustion chamber enables the engine to use diesel fuel in small engine sizes, giving it unique capabilities for UAV propulsion. The performance of the one-disk engine configuration for flight Mach numbers from 0 to 1 and altitudes from 0 to 20 km is presented and discussed. The performance with equal compression and expansion volume is compared with the higher-efficiency version with expansion volume higher than compression volume. A companion paper examines multidisk alternative engine configurations and load control schemes.
The nutating engine is a new type of internal combustion engine with distinct advantages over conventional piston engines and gas turbines in small power ranges. The engine’s unique arrangement flexibility allows several alternative disk and shaft configurations, each selected for a different application. Variations in cycle temperature ratio and compression ratio during normal operation enable the engine to effectively become a variable-cycle engine, allowing significant flexibility for maximum efficiency or power or other optimizing function for on-ground stationary or for airborne applications. In its basic configuration the core of the engine is a nutating nonrotating disk, with the center of its hub mounted in the middle of a Z-shaped shaft. The two ends of the shaft rotate, while the disk “nutates,” performs a wobbling motion without rotating around its axis. The motion of the disk circumference prescribes a portion of a sphere. A portion of the area of the disk is used for intake and compression, a portion is used to seal against a center casing, and the remaining portion is used for expansion and exhaust. The compressed air is admitted to an external accumulator, and then into an external combustion chamber before it is admitted to the power side of the disk. A companion paper examines the performance potential of the one-disk engine. This paper examines alternative engine configurations. The external combustion chamber enables the engine to operate on a variable compression ratio cycle. In addition, separate disks of unequal size are used for intake and expansion, resulting in distinct and significant power, efficiency, fuel flexibility, and arrangement advantages over conventional piston engines, over gas turbines, and over the basic nutating-engine configuration. The performance of these arrangements is examined for: on-ground power, on-ground efficiency, (auxiliary power, automotive); and for small and light airframe applications for flight Mach numbers from 0 to 1 and altitudes from 0 to 20 km. This publication is the original presentation of the performance potential of several alternative configurations of the basic engine, such as multidisk arrangements, combustion and exhaust disks of different size, and variable-compression ratio (variable cycle) configurations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.