Bei der Emulsionspolymerisation des Styrols wurde durch Anwendung von öllöslichen Startern bzw. durch rein thermische Polymerisation die Bildung der Radikale aus der Wasserphase in das Monomere verlegt. Hierbei ergab sich eine beträchtliche Erhöhung der Polymerisationsgeschwindigkeit gegenüber der Polymerisation in homogener Phase, die nur durch die Isolierung einzelner wachsender Ketten in Latexpartikeln bedingt sein kann. Dass trotz paarweiser Erzeugung der Radikale in der Öphase Latexpartikel entstehen, die nur eine wachsende Kette enthalten, wird auf eine verhältnismässig rasch verlaufende Diffusion der primär gebildeten niedrigmolekularen Radikale aus der Öphase in die Wasserphase zurüchgeführt, von wo sie dann einzeln in Mizellen bzw. Latexpartikel eintreten könuen. Der Einfluss einer solchen intermicellaren Diffusion niedrigmolekularer Radikale—womit die Isolierung in Mizellen bzw. Latexpartikeln nur mehr für makromolekulare Radikale vollständig wäre—auf die Abbruchsgeschwindigkeit in der Emulsionspolymerisation bei Kettenübertragung wird diskutiert. Für die thermische Styrolpolymerisation ist ein Diradikalmechanismus auf Grund der Unter suchungsergebnisse unwahrscheinlich.
ZUSAMMENFASSUNG:Bei Anregung der Polymerisation des emulgierten Styrols mit Benzoylperoxyd kommt es zu einer echten Emulsionspolymerisation, deren Geschwindigkeit gegeniiber der Polymerisation in homogener Phase je nach der Emulgatormenge bis auf das 7Ofache erhoht ist. Irn Gegensatz zur Emulsionspolymerisation mit Kaliumpersulfat, bei der bei etwa gleicher Anfangsgeschwindigkeit von Anfang an eine stationtire Polymerisationsgeschwindigkeit beobachtet wird, steigt hier die Geschwindigkeit im Verlaufe der Polymerisation zu einem Maximalwert an, der iiber einen groBeren Umsatzbereich stationar bleibt. Es entstehen bedeutend kiirzerkettige Polymerisate als bei Persulfatanregung, was auf eine abertragungsreaktion der wachsenden Kette mit Benzoylperoxyd zuriickgefiihrt wird. -Fur beide Formen der Emuleionspolymerisation wird als wesentlich ein verhaltnismaBig rascher Austausch der niedrigmolekularen Radikale zwischen Mizell-Latexphase und Wasser angenommen. SUMMARY:The benzoyl peroxide initiated polymerization of emulsified styrene is a true emulsion polymerization. The rate varies with the amount of emulsifier in the system and is up to 70 times greater than the rate of the homogeneous phase polymerization. The rate a t first increases during polymerization until it reaches a maximum value then remaining constant over a large conversion period, whereas the potassium persulfate initiated emulsion polymerization with the same initial rate is proceeding at a stationary rate from the beginning. Much lower molecular weight polymers are formed in the presence of benzoyl peroxide due to chain transfer of the growing chain with benzoyl peroxide. A relatively rapid exchange of the low molecular weight radicals between micelle-latexphase and water is assumed for the two kinds of emulsion polymerization to account for the experimental results.
SynopsisThe effect of solubilization of latex polymers was investigated in various anionic surfactant solutions. The process of solubilization was studied by measuring the increase in light transmission and viscosity of the latexes. It was found that anionic surfactants differ widely in their ability to solubilize a given polymer, and susceptibility to solubilization is significantly affected by comonomer content of the polymer. If, for example, a poly(viny1 acetate) latex is stabilized exclusively by a strongly solubilizing sodium dodecyl benzene sulfonate, it is less stable and hydrolyzes faster than a similar latex made with a polyoxyethylene derivative, which has only a slight solubilizing action. Dibutyl maleate copolymers of vinyl acetate are less susceptible to solubilization than homopolymers of vinyl acetate.
The initial rate of dialysis across a cellophane membrane for sodium dodecylsulfate and dodecylbenzenesuIfonate proved to be dependent on surfactant concentration without a break at the critical micelle concentration (cmc) and could, therefore, be used to determine free surfactant concentration in latices over a wide range. Equilibrium dialysis i s not a suitable tool, because, if the cmc i s exceeded in the dialyzate, diffusion comes practically to a dead stop long before equilibration, at least with ordinary detergents. (Dialysis is, however, resumed at a substantial rate if dialyzate and dialyzed solution are replaced by newly prepared solutions of the same concentration.) An explanation for these phenomena i s suggested. Free surfactant concentrations measured by rate of dialysis were far below the cmc in a polystyrene latex and far above the cmc in a comparable poly(viny1 acetate) (PVA) latex. When increasing the surfactant-polymer ratio in a PVA dispersion by postaddition complete solubilization of the polymer is observed eventually. Concentrations of free surfactant and of solubilized polymer were measured for the intermediate stages. The experimental data indicate a twofold mechanism for the solubilization process: Surfactant penetrates into the interior of PVA particles taking water with it and causing swelling to the point of disintegration, parallel to which single chains from the outer parts of the particles are already disentangled and solubilized. It i s concluded that in a PVA latex only a comparatively small portion of the anionic surfactant will be at the particle surface, a relatively large part being in the aqueous phase and in the particle interior, which may account for this surfactant being a poor stabilizer in vinyl acetate emulsion polymerization at high total solids content.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.