We present the results of the transport and magnetization measurements of electrodeposited Co/Cu multilayers grown in a single electrolyte based on C0SO4, H3BO3 and CuSO4. The samples are deposited on glass substrate covered by a 500 Å thick Cu buffer layer. X-ray diffraction performed on the samples shows fee structure of both Co and Cu layers with preferential (111) orientation. Resistivity measurements show a giant magnetoresistance effect of about 4% at room temperature for multilayers with Co and Cu thickness between 4 nm ≤ tco ≤ 6 nm and 3 nm ≤ tcu ≤4 nm respectively. For Co thickness tCo ≤ 15 nm, the magnetoresistance completely vanishes indicating that there is no more continuous Co layer. The indirect antiferromagnetic exchange coupling between magnetic Co layers is relatively large for 4 nm thick Cu spacer layer and gives rise to a temperature dependence of about 30% between room temperature and 4.2 K.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.