Push–pull polymeric electro-optic Mach–Zehnder (MZ) modulators with Vπ of 1.2 and 1.8 V at 1310 and 1550 nm, respectively, with an interaction length of 2 cm are demonstrated. These devices were made from second-order nonlinear optic guest–host polymers that consisted of a phenyltetraene bridged high μβ chromophore guest and an amorphous polycarbonate host. Poling was done in N2 atmosphere to avoid chromophore bleaching by oxidation. A MZ-like two-arm microstrip line was used as the driving electrode in these devices. The optical response dropped 3 dB electrical from 2 to 20 GHz. These 3 cm long devices have 5 dB total chip loss at both wavelengths and good thermal stability.
Electro-optic polymer modulators operating at 1550 nm are demonstrated based on a nonlinear optical polymer of a phenyltetraene bridged chromophore in polycarbonate. It has a large electro-optic coefficient (r33=55 pm/V at 1550 nm), good thermal stability (90 °C), and low loss (1.7 dB/cm). A thin protective layer was used in the fabrication of ridge waveguides on the nonlinear polymer. We measured Vπ of 2.4 and 3.7 V at 1300 and 1550 nm, respectively. The chip loss of the modulator at both wavelengths was 5 dB, not including fiber coupling losses.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.