Stability characteristics of a single-phase free convection loop are presented. In the experiments, water was placed inside a toroidal glass loop oriented in a vertical plane. The lower half of the loop was heated and the upper half was cooled. At low heat-transfer rates and also a t high heat-transfer rates the free convection flow was observed to be steady. For the intermediate range, however, the flow was found to be highly oscillatory. Stability predictions are also developed. The comparison between theory and experiment yields favourable agreement.Observations of unstable behaviour have been reported previously for single-phase fluids in the vicinity of the thermodynamic critical point. In these situations it has been assumed that the unusual behaviour of the fluid properties in the near-critical region necessarily constitutes the underlying cause of such instabilities. In contrast t o this view, analyses by Keller (1966) and Welander (1967) indicate that instabilities can occur for ordinary fluids as well. Results of the present study confirm this contention, since instabilities were clearly observed for water at atmospheric pressure and moderate temperatures.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.