This paper provides a snapshot of the permafrost thermal state in the Nordic area obtained during the International Polar Year (IPY) [2007][2008][2009]. Several intensive research campaigns were undertaken within a variety of projects in the Nordic countries to obtain this snapshot. We demonstrate for Scandinavia that both lowland permafrost in palsas and peat plateaus, and large areas of permafrost in the mountains are at temperatures close to 08C, which makes them sensitive to climatic changes. In Svalbard and northeast Greenland, and also in the highest parts of the mountains in the rest of the Nordic area, the permafrost is somewhat colder, but still only a few degrees below the freezing point. The observations presented from the network of boreholes, more than half of which were established during the IPY, provide an important baseline to assess how future predicted climatic changes may affect the permafrost thermal state in the Nordic area. Time series of active-layer thickness and permafrost temperature conditions in the Nordic area, which are generally only 10 years in length, show generally increasing active-layer depths and rising permafrost temperatures.
The coupling between air and ground temperatures in the mountains of southern Norway was examined using 12 shallow boreholes drilled in August 2008. Three borehole arrays (at Juvvass, Jetta and Tron), each with boreholes at different elevations, were established along a continentality gradient. At the least continental site (Juvvass), the transect includes boreholes with shallow seasonal frost to continuous permafrost, while at Jetta and Tron, the arrays covered the transition from relatively deep seasonal frost to marginal permafrost. On the north slope of Tron, however, ground surface temperatures indicate more widespread permafrost conditions, apparently due to the negative thermal anomaly associated with an openwork block field. The surface offsets (mean ground surface temperature (MGST) minus mean air temperature (MAT)) ranged from < 1 °C for unvegetated wind‐scoured sites to up to 4.5 °C for sites with a thick, prolonged snow cover. Active‐layer thicknesses at the borehole sites close to the lower limit of mountain permafrost were up to 10 m in bedrock, even under a low thermal diffusivity sediment cover. The mean ground temperature at 10‐m depth differed significantly from the MGST, mainly due to the 3D thermal effects of the varying snow cover. Our air temperature measurements do not support the inference that the observed decrease in the lower elevational limit of mountain permafrost with continentality is mainly due to lower MAT. Rather, the pattern fits with an eastwards decrease in the lower limit of block fields and snowfall amounts. Copyright © 2011 John Wiley & Sons, Ltd.
CryoGRID 1.0 provides an equilibrium model of permafrost distribution in Norway at a spatial resolution of 1 km2. The approach was forced with gridded data on daily air temperature and snow cover. Ground thermal properties for different bedrock types and sediment covers were derived from surveys and geological maps to yield distributions of thermal conductivity, heat capacity and water content. The distribution of blockfields was derived from satellite images adapting a newly developed classification scheme. The model was evaluated using measured ground surface and ground temperatures, yielding a realistic description of the permafrost distribution in mainland Norway. The model results show that permafrost underlies sites mainly with exposed bedrock or covered by coarse‐grained sediments, such as blockfields and coarse tills. In northern Norway, palsa mires are abundant and organic material and vegetation strongly influence the ground thermal regime. Modelling suggests that permafrost in equilibrium with the 1981–2010 climate presently underlies between 6.1 per cent and 6.4 per cent of the total area of mainland Norway, an area significantly smaller than that modelled for the Little Ice Age climate (14%). CryoGRID 1.0 was subsequently forced using output from a regional climate model for the 2071–2100 period, which suggests that severe permafrost degradation will occur, leaving permafrost beneath an area of just 0.2 per cent of mainland Norway. Copyright © 2013 John Wiley & Sons, Ltd.
A ten‐year record (1999–2009) of annual mean ground surface temperatures (MGSTs) and mean ground temperatures (MGTs) was analysed for 16 monitoring sites in Jotunheimen and on Dovrefjell, southern Norway. Warming has occurred at sites with cold permafrost, marginal permafrost and deep seasonal frost. Ongoing permafrost degradation is suggested both by direct temperature monitoring and indirect geophysical surveys. An increase in MGT at 6.6–9.0‐m depth was observed for most sites, ranging from ~0.015 to ~ 0.095°C a‐1. The greatest rate of temperature increase was for sites having MGTs slightly above 0°C. The lowest rate of increase was for marginal permafrost sites that are affected by latent heat exchange close to 0°C. Increased snow depths and an increase in winter air temperatures appear to be the most important factors controlling warming observed over the ten‐year period. Geophysical surveys performed in 1999 to delineate the altitudinal limit of mountain permafrost were repeated in 2009 and 2010 and indicated the degradation of some permafrost over the intervening decade. Copyright © 2011 John Wiley & Sons, Ltd.
A regional map of permafrost distribution in Iceland was developed based on meteorological data. The regional model was calibrated with ground surface temperature data and tested using ground temperature data from four shallow boreholes and a rock glacier inventory. The results indicate widespread mountain permafrost at elevations above 800–900 m a.s.l. in northern and eastern Iceland. According to the regional map, the mountain permafrost zone covers c. 8000 km2 which is about 8% of the country's land area. Copyright © 2007 John Wiley & Sons, Ltd.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.