Even under the intensive concentrate feeding systems of ruminant animal production in the United States, forages continue to represent the single most important feed resource. Cell-wall concentration and digestibility limit the intake potential and energy availability of forage crops in beef and dairy production. Identification of cell-wall characteristics that should be targets of genetic modification is required if plant breeders and molecular biologists are to successfully improve forages for livestock feeding. As the forage plant cell develops, phenolic acids and lignin are deposited in the maturing cell wall in specific structural conformations, and in a strict developmental sequence. Lignin is the key element that limits cell-wall digestibility, but cross-linkage of lignin and wall polysaccharides by ferulic acid bridges may be a prerequisite for lignin to exert its affect. Lignin composition and p-coumaric acid in the wall are less likely to affect digestibility. Voluntary intake of forages is a critical determinant of animal performance and cell-wall concentration is negatively related to intake of ruminants consuming high-forage diets. Cell walls affect intake by contributing to ruminal fill. A simple model of cell-wall digestion and passage in which ruminal fill is a function of rates of digestion and passage, as well as the indigestible fraction of the cell-wall indicates that cell-wall concentration and rate of passage are the most critical parameters determining ruminal fill. Plant factors that affect rate of passage include those that affect particle size reduction by chewing and those that affect particle buoyancy in the rumen. The latter is primarily affected by 1) the ability of the particulate matter to retain gases, which is probably related to plant anatomy and rate of digestion of the plant tissue, and 2) the rate at which the gas is produced, which is affected by the potentially digestible fraction of the particulate matter and the rate of digestion of this fraction. Increasing rate of digestion should increase rate of passage by diminishing the gas produced and increasing density over time. A reduction in the indigestible cell-wall fraction is beneficial because this will decrease fill and increase digestibility. Animal production and economic benefits from reduced cell-wall concentration and increased digestibility are significant. Because of the high cell-wall concentration and large digestible cell-wall fraction of grasses, reduction in cell-wall concentration would probably be of greater value than improving digestibility in these species. Legumes represent the opposite situation and may benefit more from improvements in the digestibility of their cell walls.
Alfalfa stems, reed canarygrass, and switchgrass; perennial herbaceous species that have potential as biomass energy crops in temperate regions; were evaluated for their bioconversion potential as energy crops. Each forage species was harvested at two or three maturity stages and analyzed for carbohydrates, lignin, protein, lipid, organic acids, and mineral composition. The biomass samples were also evaluated for sugar yields following pretreatment with dilute sulfuric followed by enzymatic saccharification using a commercial cellulase preparation. Total carbohydrate content of the plants varied from 518 to 655 g kg À1 dry matter (DM) and cellulose concentration from 209 to 322 g kg À1 DM. Carbohydrate and lignin contents were lower for samples from early maturity samples compared to samples from late maturity harvests. Several important trends were observed in regards to the efficiency of sugar recovery following treatments with dilute acid and cellulase. First, a significant amount of the available carbohydrates were in the form of soluble sugars and storage carbohydrates (4.3-16.3% wt/wt). Recovery of soluble sugars following dilute acid pretreatment was problematic, especially that of fructose. Fructose was found to be extremely labile to the dilute acid pretreatments. Second, the efficiency at which available glucose was recovered was inversely correlated to maturity and lignin content. However, total glucose yields were higher for the later maturities because of higher cellulose contents compared to the earlier maturity samples. Finally, cell wall polysaccharides, as determined by the widely applied detergent fiber system were found to be inaccurate. The detergent fiber method consistently overestimated cellulose and hemicellulose and underestimated lignin by substantial amounts.
Seasonal time of switchgrass (Panicum virgatum L.) harvest affects yield and biofuel quality and balancing these two components may vary depending on conversion system. A field study compared fall and spring harvest measuring biomass yield, element concentration, carbohydrate characterization, and total synthetic gas production as indicators of biofuel quality for direct combustion, ethanol production, and gasification systems for generation of energy. Switchgrass yields decreased almost 40% (from about 7-4.4 Mg ha 21) in winters with above average snowfall when harvest was delayed over winter until spring. The moisture concentration also decreased (from about 350-70 g kg 21) only reaching low enough levels for safe storage by spring. About 10% of the yield reduction during winter resulted from decreases in tiller mass; however, almost 90% of the yield reduction was due to an increase in biomass left behind by the baler. Mineral element concentrations generally decreased with the delay in harvest until spring. Energy yield from gasification did not decrease on a unit biomass basis, whereas ethanol production was variable depending on the assessment method. When expressed on a unit area basis, energy yield decreased. Biofuel conversion systems may determine harvest timing. For direct combustion, the reduced mineral concentrations in spring-harvested biomass are desirable. For ethanol fermentation and gasification systems, however, lignocellulose yield may be more important. On conservations lands, the wildlife cover provided by switchgrass over the winter may increase the desirability of spring harvest along with the higher biofuel quality. A NUMBER OF PLANT SPECIES have been considered as dedicated energy crops (Lewandowski et al., 2003b; Walsh et al., 2003; Angelini et al., 2005), representing both annual and perennial herbaceous crops and shortrotation trees. Perennial grasses have several advantages over annual crops such as lower establishment costs, reduced soil erosion, increased water quality, and enhanced wildlife habitat (
Two methods-Klason lignin (KL) and acid detergent lignin ( A D L F for determining lignin concentration in plants were compared using stem material from lucerne (Medicago satioa L), cocksfoot (Dactylis glomerata L) and switchgrass (Panicurn virgatum L), at three stages of maturity, and leaf samples from lucerne and cocksfoot. For all forages, KL values were higher than ADL values. Lucerne samples, which had crude protein levels twice that of the grass species, had KL values that were only 30-40% higher than ADL values; in grasses, KL values were 200-300% greater than ADL values. The addition of nitrogenous materials (bovine serum albumin, lysine, and ammonium sulfate) to commercial xylan and cellulose did not result in additional KL residue. Pyrolysis-GC-MS revealed that both residues appeared to be similar to the orginal plant lignin and did not appear to be contaminated with carbohydrate or protein. The higher values for grass KL residues were not due to protein contamination or incomplete hydrolysis of carbohydrates, but were more likely due to the solubilization of lignin components by the ADL treatment. KL values may give a more accurate quantification of the total lignin within forage plants.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.